Skip to main content

Evaluation of Hyperspectral Image Classification Using Random Forest and Fukunaga-Koontz Transform

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7988))

Abstract

Since hyperspectral imagery (HSI) (or remotely sensed data) provides more information (or additional bands) than traditional gray level and color images, it can be used to improve the performance of image classification applications. A hyperspectral image presents spectral features (also called spectral signature) of regions in the image as well as spatial features. Feature reduction, selection, and transformation has been a challenging problem for hyperspectral image classification due to the high number of dimensions. In this paper, we firstly use Random Forest (RF) algorithm to select significant features and then apply Kernel Fukunaga Koontz Transform (K-FKT), a non-linear statistical technique, for the classification. We provide our experimental results on AVIRIS hyperspectral image dataset that contains various types of field crops. In our experimental results, we have obtained overall classification accuracy around 84 percent for the classification of 16 types of field crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binol, H., Bal, A., Dinc, S.: Classification on hyperspectral images using enhanced covariance descriptor. In: 20th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2012)

    Google Scholar 

  2. Benediktsson, J.A., Palmason, J.A., Member, S., Sveinsson, J.R., Member, S.: Sveinsson, classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing 43, 480–491 (2005)

    Article  Google Scholar 

  3. Banerjee, A., Burlina, P., Diehl, C.: A support vector method for anomaly detection in hyperspectral imagery. IEEE T. Geoscience and Remote Sensing, 2282–2291 (2006)

    Google Scholar 

  4. Borges, J.S., Bioucas-Dias, J.M., Marçal, A.R.S.: Bayesian hyperspectral image segmentation with discriminative class learning. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 22–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Alam, M.S., Islam, M.N., Bal, A., Karim, M.A.: Hyperspectral target detection using gaussian filter and post-processing. Optics and Lasers in Engineering 46(11), 817–822 (2008)

    Article  Google Scholar 

  6. Du, P., Zhang, W., Xia, J.: Hyperspectral remote sensing image classification based on decision level fusion. Chin. Opt. Lett. 9(3), 031002 (2011)

    Google Scholar 

  7. Tuia, D., Camps-Valls, G.: Urban Image Classification With Semisupervised Multiscale Cluster Kernels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1 (2011)

    Google Scholar 

  8. Samiappan, S., Prasad, S., Bruce, L.M.: Automated hyperspectral imagery analysis via support vector machines based multi-classifier system with non-uniform random feature selection. In: IGARSS, pp. 3915–3918. IEEE (2011)

    Google Scholar 

  9. Aviris hyperspectral data (2012), http://aviris.jpl.nasa.gov/html/data.html

  10. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: A survey and results of new tests. Pattern Recognition 44(2), 330–349 (2011)

    Article  Google Scholar 

  12. Cumbaa, C., Jurisica, I.: Protein crystallization analysis on the world community grid. Journal of Structural and Functional Genomics 11, 61–69 (2010), doi:10.1007/s10969-009-9076-9

    Article  Google Scholar 

  13. Fukunaga, K., Koontz, W.L.G.: Application of the karhunen-loéve expansion to feature selection and ordering. IEEE Trans. Comput. 19(4), 311–318 (1970)

    Article  MATH  Google Scholar 

  14. Ochilov, S., Alam, M.S., Bal, A.: Fukunaga-koontz transform based dimensionality reduction for hyperspectral imagery. Proceedings-SPIE The International Society For Optical Engineering 6233, 62332A–62332A–8 (2006)

    Google Scholar 

  15. Li, Y.H., Savvides, M.: Kernel fukunaga-koontz transform subspaces for enhanced face recognition. 2012 IEEE Conference on Computer Vision and Pattern Recognition 0, 1–8 (2007)

    Google Scholar 

  16. Dinc, S., Bal, A.: A statistical approach for multiclass target detection. Procedia Computer Science, Complex A1daptive Sysytems 6(0), 225–230 (2011)

    Article  Google Scholar 

  17. Hyperspectral remote sensing scenes, aviris sensor (indian pines) (2013), http://www.ehu.es/ccwintco/index.php/Sensores-hiperespectrales

  18. Bagan, H., Yasuoka, Y., Endo, T., Wang, X., Feng, Z.: Classification of airborne hyperspectral data based on the average learning subspace method. IEEE Geoscience and Remote Sensing Letters 5(3), 368–372 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinç, S., Aygün, R.S. (2013). Evaluation of Hyperspectral Image Classification Using Random Forest and Fukunaga-Koontz Transform. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39712-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39711-0

  • Online ISBN: 978-3-642-39712-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics