Abstract
In this paper, we develop an efficient method for feature selection in Semi-Supervised Support Vector Machine (S3VM). Using an appropriate continuous approximation of the l 0 − norm, we reformulate the feature selection S3VM problem as a DC (Difference of Convex functions) program. DCA (DC Algorithm), an innovative approach in nonconvex programming is then developed to solve the resulting problem. Computational experiments on several real-world datasets show the efficiency and the scalability of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amaldi, E., Kann, V.: On the approximability of minimizing non zero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209, 237–260 (1998)
Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Proceedings of the Conference on Advances in Neural Information Processing Systems II, Cambridge, MA, USA, pp. 368–374 (1999)
Bradley, P.S., Mangasarian, O.L.: Feature Selection via concave minimization and support vector machines. In: Proceeding of ICML 1998, SF, CA, USA, pp. 82–90 (1998)
Chapelle, O., Zien, A.: A, Semi-supervised classification by low density separation. In: Proc. 10th Internat. Workshop on Artificial Intelligence and Statistics, Barbados, pp. 57–64 (2005)
Chapelle, O., Sindhwani, V., Keerthi, S.: Branch and bound for semi-supervised support vector machines. In: Advances in Neural Information Processing Systems, vol. 17, pp. 217–224. MIT Press, Cambridge (2006)
Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization Techniques for Semi-Supervised Support Vector Machines. Journal of Machine Learning Research 9, 203–233 (2008)
Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Machine Learn. 7, 1687–1712 (2006)
Fung, G., Mangasarian, O.: Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software 15, 29–44 (2001)
Joachims, T.: Transductive inference for text classification using support vector machines. In: 16th Inter. Conf. on Machine Learning, SF, USA, pp. 200–209 (1999)
Krause, N., Singer, Y.: Leveraging the margin more carefully. In: Proceeding of ICML 2004, NY, USA, pp. 63–71 (2004)
H.A. Le Thi, Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algoritmes et Applications, Habilitation à Diriger des Recherches, Université de Rouen (1997).
Le Thi, H.A., Dinh, T.P.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization 11(3), 253–285 (1997)
Le Thi, H.A., Dinh, T.P.: The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research 133, 23–46 (2005)
Le Thi, H.A., Belghiti, T., Dinh, T.P.: A new efficient algorithm based on DC programming and DCA for Clustering. Journal of Global Optimization 37, 593–608 (2006)
Le Thi, H.A., Le Hoai, M., Dinh, T.P.: Optimization based DC programming and DCA for Hierarchical Clustering. European Journal of Operational Research 183, 1067–1085 (2007)
Le Thi, H.A., Le Hoai, M., Nguyen, N.V., Dinh, T.P.: A DC Programming approach for Feature Selection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification 2(3), 259–278 (2008)
Le Thi, H.A.: DC Programming and DCA, http://lita.sciences.univ-metz.fr/~lethi
Liu, Y., Shen, X., Doss, H.: Multicategory ψ-Learning and Support Vector Machine: Computational Tools. Journal of Computational and Graphical Statistics 14, 219–236 (2005)
Neumann, J., Schnörr, C., Steidl, G.: Combined SVM-based feature selection and classification. Machine Learning 61(1–3), 129–150 (2005)
Thiao, M., Dinh, T.P., Le Thi, H.A.: DC programming approach for a class of nonconvex programs involving l 0 norm. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 348–357. Springer, Heidelberg (2008)
Rakotomamonjy, A.: Variable Selection Using SVM-based Criteria. Journal of Machine Learning Research 3, 1357–1370 (2003)
Ronan, C., Fabian, S., Jason, W., Lé, B.: Trading Convexity for Scalability. In: Proceedings of the 23rd International Conference on Machine Learning ICML 2006, Pittsburgh, Pennsylvania, pp. 201–208 (2006)
Yuille, A.L., Rangarajan, A.: The Convex Concave Procedure. Neural Computation 15(4), 915–936 (2003)
Sindhwani, V., Keerthi, S., Chapelle, O.: Deterministic annealing for semi-supervised kernel machines. In: Proceedings of ICML 2006, NY, USA, pp. 841–848 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Le, H.M., Le Thi, H.A., Nguyen, M.C. (2013). DCA Based Algorithms for Feature Selection in Semi-supervised Support Vector Machines. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-39712-7_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39711-0
Online ISBN: 978-3-642-39712-7
eBook Packages: Computer ScienceComputer Science (R0)