Abstract
The usual frameworks for visual classification involve three steps: extracting features, building codebook and encoding features, and training classifiers. The current release of ImageNet dataset [1] with more than 14M images and 21K classes makes the problem of visual classification become more difficult to deal with. One of the most difficult tasks is to train a fast and accurate classifier. In this paper, we address this challenge by extending the state-of-the-art large scale classifier Power Mean SVM (PmSVM) proposed by Jianxin Wu [2] in two ways: (1) The first one is to build the balanced bagging classifiers with under-sampling strategy. Our algorithm avoids training on full data and the training process of PmSVM rapidly converges to the optimal solution, (2) The second one is to parallelize the training process of all classifiers with multi-core computers. We have developed the parallel versions of PmSVM based on high performance computing models. The evaluation on 1000 classes of ImageNet (ILSVRC 1000 [3]) shows that our approach is 90 times faster than the original implementation of PmSVM and 240 times faster than the state-of-the-art linear classifier (LIBLINEAR [4]).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: A large-scale hierarchical image database. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Wu, J.: Power mean svm for large scale visual classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2344–2351 (2012)
Berg, A., Deng, J., Li, F.F.: Large scale visual recognition challenge 2010. Technical report (2010)
Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method for large-scale linear svm. In: International Conference on Machine Learning, pp. 408–415 (2008)
Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)
Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical Report CNS-TR-2007-001, California Institute of Technology (2007)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)
Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010)
Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.S.: Large-scale image classification: Fast feature extraction and svm training. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1689–1696 (2011)
Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 480–492 (2012)
Wu, J.: A fast dual method for HIK SVM learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 552–565. Springer, Heidelberg (2010)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: In Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893. IEEE Computer Society (2005)
Griffin, G., Perona, D.: Learning and using taxonomies for fast visual categorization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2008)
Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: IEEE 12th International Conference on Computer Vision, pp. 606–613. IEEE (2009)
Fergus, R., Weiss, Y., Torralba, A.: Semi-supervised learning in gigantic image collections. In: Advances in Neural Information Processing Systems, pp. 522–530 (2009)
Wang, C., Yan, S., Zhang, H.J.: Large scale natural image classification by sparsity exploration. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3709–3712. IEEE (2009)
Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image collections. In: IEEE 12th International Conference on Computer Vision, pp. 1957–1964. IEEE (2009)
Perronnin, F., Sánchez, J., Liu, Y.: Large-scale image categorization with explicit data embedding. In: CVPR, pp. 2297–2304 (2010)
Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1665–1672 (2011)
Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Advances in Neural Information Processing Systems, pp. 2223–2231 (2009)
Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: European Conference on Computer Vision, pp. 141–154 (2010)
Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)
Yuan, G.X., Ho, C.H., Lin, C.J.: Recent advances of large-scale linear classification. Proceedings of the IEEE 100(9), 2584–2603 (2012)
Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: Proceedings of the Seventh European Symposium on Artificial Neural Networks, pp. 219–224 (1999)
Guermeur, Y.: Svm multiclasses, théorie et applications (2007)
Krebel, U.: Pairwise classification and support vector machines. Advances in Kernel Methods: Support Vector Learning, 255–268 (1999)
Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. Advances in Neural Information Processing Systems 12, 547–553 (2000)
Vural, V., Dy, J.: A hierarchical method for multi-class support vector machines. In: Proceedings of the Twenty-frst International Conference on Machine Learning, pp. 831–838 (2004)
Benabdeslem, K., Bennani, Y.: Dendogram-based svm for multi-class classification. Journal of Computing and Information Technology 14(4), 283–289 (2006)
Japkowicz, N. (ed.): AAAI’Workshop on Learning from Imbalanced Data Sets. Number WS-00-05 in AAAI Tech. report (2000)
Weiss, G.M., Provost, F.: Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research 19, 315–354 (2003)
Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - A review paper. In: Midwest Artificial Intelligence and Cognitive Science Conf., Dayton, USA, pp. 67–73 (2005)
Lenca, P., Lallich, S., Do, T.-N., Pham, N.-K.: A comparison of different off-centered entropies to deal with class imbalance for decision trees. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 634–643. Springer, Heidelberg (2008)
Pham, N.K., Do, T.N., Lenca, P., Lallich, S.: Using local node information in decision trees: coupling a local decision rule with an off-centered. In: International Conference on Data Mining, pp. 117–123. CSREA Press, Las Vegas (2008)
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003)
Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39(2), 539–550 (2009)
Ricamato, M.T., Marrocco, C., Tortorella, F.: Mcs-based balancing techniques for skewed classes: An empirical comparison. In: ICPR, pp. 1–4 (2008)
MPI-Forum.: Mpi: A message-passing interface standard
OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008)
Do, T.N., Nguyen, V.H., Poulet, F.: Gpu-based parallel svm algorithm. Journal of Frontiers of Computer Science and Technology 3(4), 368–377 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doan, TN., Do, TN., Poulet, F. (2013). Large Scale Visual Classification with Many Classes. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-39712-7_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39711-0
Online ISBN: 978-3-642-39712-7
eBook Packages: Computer ScienceComputer Science (R0)