Skip to main content

Large Scale Visual Classification with Many Classes

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7988))

  • 4445 Accesses

Abstract

The usual frameworks for visual classification involve three steps: extracting features, building codebook and encoding features, and training classifiers. The current release of ImageNet dataset [1] with more than 14M images and 21K classes makes the problem of visual classification become more difficult to deal with. One of the most difficult tasks is to train a fast and accurate classifier. In this paper, we address this challenge by extending the state-of-the-art large scale classifier Power Mean SVM (PmSVM) proposed by Jianxin Wu [2] in two ways: (1) The first one is to build the balanced bagging classifiers with under-sampling strategy. Our algorithm avoids training on full data and the training process of PmSVM rapidly converges to the optimal solution, (2) The second one is to parallelize the training process of all classifiers with multi-core computers. We have developed the parallel versions of PmSVM based on high performance computing models. The evaluation on 1000 classes of ImageNet (ILSVRC 1000 [3]) shows that our approach is 90 times faster than the original implementation of PmSVM and 240 times faster than the state-of-the-art linear classifier (LIBLINEAR [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: A large-scale hierarchical image database. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  2. Wu, J.: Power mean svm for large scale visual classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2344–2351 (2012)

    Google Scholar 

  3. Berg, A., Deng, J., Li, F.F.: Large scale visual recognition challenge 2010. Technical report (2010)

    Google Scholar 

  4. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method for large-scale linear svm. In: International Conference on Machine Learning, pp. 408–415 (2008)

    Google Scholar 

  5. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

    Article  Google Scholar 

  6. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical Report CNS-TR-2007-001, California Institute of Technology (2007)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.S.: Large-scale image classification: Fast feature extraction and svm training. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1689–1696 (2011)

    Google Scholar 

  10. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 480–492 (2012)

    Article  Google Scholar 

  11. Wu, J.: A fast dual method for HIK SVM learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 552–565. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: In Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  13. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  15. Griffin, G., Perona, D.: Learning and using taxonomies for fast visual categorization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2008)

    Google Scholar 

  16. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: IEEE 12th International Conference on Computer Vision, pp. 606–613. IEEE (2009)

    Google Scholar 

  17. Fergus, R., Weiss, Y., Torralba, A.: Semi-supervised learning in gigantic image collections. In: Advances in Neural Information Processing Systems, pp. 522–530 (2009)

    Google Scholar 

  18. Wang, C., Yan, S., Zhang, H.J.: Large scale natural image classification by sparsity exploration. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3709–3712. IEEE (2009)

    Google Scholar 

  19. Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image collections. In: IEEE 12th International Conference on Computer Vision, pp. 1957–1964. IEEE (2009)

    Google Scholar 

  20. Perronnin, F., Sánchez, J., Liu, Y.: Large-scale image categorization with explicit data embedding. In: CVPR, pp. 2297–2304 (2010)

    Google Scholar 

  21. Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1665–1672 (2011)

    Google Scholar 

  22. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Advances in Neural Information Processing Systems, pp. 2223–2231 (2009)

    Google Scholar 

  23. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: European Conference on Computer Vision, pp. 141–154 (2010)

    Google Scholar 

  24. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011)

    Article  Google Scholar 

  25. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)

    Google Scholar 

  26. Yuan, G.X., Ho, C.H., Lin, C.J.: Recent advances of large-scale linear classification. Proceedings of the IEEE 100(9), 2584–2603 (2012)

    Article  Google Scholar 

  27. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: Proceedings of the Seventh European Symposium on Artificial Neural Networks, pp. 219–224 (1999)

    Google Scholar 

  28. Guermeur, Y.: Svm multiclasses, théorie et applications (2007)

    Google Scholar 

  29. Krebel, U.: Pairwise classification and support vector machines. Advances in Kernel Methods: Support Vector Learning, 255–268 (1999)

    Google Scholar 

  30. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. Advances in Neural Information Processing Systems 12, 547–553 (2000)

    Google Scholar 

  31. Vural, V., Dy, J.: A hierarchical method for multi-class support vector machines. In: Proceedings of the Twenty-frst International Conference on Machine Learning, pp. 831–838 (2004)

    Google Scholar 

  32. Benabdeslem, K., Bennani, Y.: Dendogram-based svm for multi-class classification. Journal of Computing and Information Technology 14(4), 283–289 (2006)

    Google Scholar 

  33. Japkowicz, N. (ed.): AAAI’Workshop on Learning from Imbalanced Data Sets. Number WS-00-05 in AAAI Tech. report (2000)

    Google Scholar 

  34. Weiss, G.M., Provost, F.: Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research 19, 315–354 (2003)

    MATH  Google Scholar 

  35. Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - A review paper. In: Midwest Artificial Intelligence and Cognitive Science Conf., Dayton, USA, pp. 67–73 (2005)

    Google Scholar 

  36. Lenca, P., Lallich, S., Do, T.-N., Pham, N.-K.: A comparison of different off-centered entropies to deal with class imbalance for decision trees. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 634–643. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Pham, N.K., Do, T.N., Lenca, P., Lallich, S.: Using local node information in decision trees: coupling a local decision rule with an off-centered. In: International Conference on Data Mining, pp. 117–123. CSREA Press, Las Vegas (2008)

    Google Scholar 

  38. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  39. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39(2), 539–550 (2009)

    Article  Google Scholar 

  40. Ricamato, M.T., Marrocco, C., Tortorella, F.: Mcs-based balancing techniques for skewed classes: An empirical comparison. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  41. MPI-Forum.: Mpi: A message-passing interface standard

    Google Scholar 

  42. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008)

    Google Scholar 

  43. Do, T.N., Nguyen, V.H., Poulet, F.: Gpu-based parallel svm algorithm. Journal of Frontiers of Computer Science and Technology 3(4), 368–377 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doan, TN., Do, TN., Poulet, F. (2013). Large Scale Visual Classification with Many Classes. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39712-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39711-0

  • Online ISBN: 978-3-642-39712-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics