Abstract
This paper describes the authors’ experiments with Support Vector Machines and Hidden Conditional Random Fields on the classification of freely articulated sign words drawn from the Brazilian Sign Language (Libras). While our previous works focused specifically on fingerspelling recognition on tightly controlled environment conditions, in this work we perform the classification of natural signed words in an unconstrained background without the aid of gloves or wearable tracking devices. We show how our choice of feature vector, extracted from depth information and based on linguistic investigations, is rather effective for this task. Again we provide comparison results against Artificial Neural Networks and Hidden Markov Models, reporting statistically significant results favoring our choice of classifiers; and we validate our findings using the chance-corrected Cohen’s Kappa statistic for contingency tables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pizzolato, E., Anjo, M., Pedroso, G.: Automatic recognition of finger spelling for LIBRAS based on a two-layer architecture. In: Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, pp. 969–973 (2010)
de Souza, C.R., Pizzolato, E.B., dos Santos Anjo, M.: Fingerspelling Recognition with Support Vector Machines and Hidden Conditional Random Fields. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 561–570. Springer, Heidelberg (2012)
Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews 37(3), 311–324 (2007)
Chen, X., Xiang, L.Y., Lantz, V., Wang, K., Yang, J.: A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(6), 1064–1076 (2011)
Yang, H.-D., Sclaroff, S., Lee, S.-W.: Sign Language Spotting with a Threshold Model Based on Conditional Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1264–1277 (2009)
Bauer, B., Kraiss, K.-F.: Video-based sign recognition using self-organizing subunits. In: Proceedings of the16th International Conference on Pattern Recognition, vol. 2, pp. 434–437 (2002)
Dias, D., Madeo, R., Rocha, T., Bíscaro, H., Peres, S.: Hand movement recognition for brazilian sign language: a study using distance-based neural networks. In: Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, Georgia, USA, pp. 2355–2362 (2009)
Elmezain, M., Al-Hamadi, A., Michaelis, B.: Discriminative Models-Based Hand Gesture Recognition. In: International Conference on Machine Vision, Los Alamitos, CA, USA, pp. 123–127 (2009)
Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., Presti, P.: American Sign Language Recognition with the Kinect. In: Proceedings of the 13th International Conference on Multimodal Interfaces, Alicante, Spain, pp. 279–286 (2011)
Bowden, R., Windridge, D., Kadir, T., Zisserman, A., Brady, M.: A Linguistic Feature Vector for the Visual Interpretation of Sign Language. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 390–401. Springer, Heidelberg (2004)
Holden, E.-J., Lee, G., Owens, R.: Australian sign language recognition. Machine Vision and Applications 16(5), 312–320 (2005)
Carneiro, A., Cortez, P., Costa, R.: Reconhecimento de Gestos da LIBRAS com Classificadores Neurais a partir dos Momentos Invariantes de Hu. In: Interaction 2009, South America, São Paulo, pp. 190–195 (2009)
Wang, S., Quattoni, A., Morency, L.-P., Demirdjian, D.: Hidden Conditional Random Fields for Gesture Recognition. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 2, pp. 1521–1527 (2006)
Morency, L.-P., Quattoni, A., Darrell, T.: Latent-Dynamic Discriminative Models for Continuous Gesture Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)
Ferreira-Brito, L.: Por uma gramática de Línguas de Sinais, 2nd edn. Tempo Brasileiro, Rio de Janeiro (2010)
Igel, C., Hüsken, M.: Improving the Rprop Learning Algorithm. In : Symposium A Quarterly Journal In Modern Foreign Literatures, pp.115-121 (2000)
Riedmiller, M.: RProp - Description and Implementation Details. Technical Report, University of Karlsruhe, Karlsruhe (1994)
Dahl, G., Yu, D., Deng, L., Acero, A.: Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing (2012)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn., 2200935th edn. Springer (2009)
Platt, J., Cristianini, N., Shawe-taylor, J.: Large Margin DAGs for Multiclass Classification. Advances in Neural Information Processing Systems, 547–553 (2000)
Joachims, T.: Text categorization with Support Vector Machines: Learning with many relevant features Machine Learning. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)
Joachims, T.: Making large-scale support vector machine learning practical. In: Advances in Kernel Methods, pp. 169–184. MIT Press, Cambridge (1999)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, 1st edn. Cambridge University Press, Cambridge (2000)
Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Comput. 13(3), 637–649 (2001)
Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. In: Waibel, A., Lee, K.-F. (eds.) Readings in Speech Recognition, pp. 267–296. Morgan Kaufmann Publishers Inc., San Francisco (1990)
Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 282–289 (2001)
Sutton, C., McCallum, A.: Introduction to Statistical Relational Learning. In: Taskar, L. (ed.) An Introduction to Conditional Random Fields for Relational Learning. MIT Press (2007)
Mahajan, M., Gunawardana, A., Acero, A.: Training algorithms for hidden conditional random fields. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 273–276 (2006)
Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of Computer Vision (2001)
Bradski, G.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technology Journal(Q2) (1998)
Anjo, M., Pizzolato, E., Feuerstack, S.: A Real-Time System to Recognize Static Hand Gestures of Brazilian Sign Language (Libras) alphabet using Kinect. In: Proceedings of IHC 2012, the 6th Latin American Conference on Human-Computer Interaction, Cuiabá, Mato Grosso, Brazil (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Souza, C.R., Pizzolato, E.B. (2013). Sign Language Recognition with Support Vector Machines and Hidden Conditional Random Fields: Going from Fingerspelling to Natural Articulated Words. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-39712-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39711-0
Online ISBN: 978-3-642-39712-7
eBook Packages: Computer ScienceComputer Science (R0)