Abstract
We extend the Multi-lane Spatial Logic MLSL, introduced in previous work for proving the safety (collision freedom) of traffic maneuvers on a multi-lane highway, by length measurement and dynamic modalities. We investigate the proof theory of this extension, called EMLSL. To this end, we prove the undecidability of EMLSL but nevertheless present a sound proof system which allows for reasoning about the safety of traffic situations. We illustrate the latter by giving a formal proof for a lemma we could only prove informally before.
This research was partially supported by the German Research Council (DFG) in the Transregional Collaborative Research Center SFB/TR 14 AVACS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)
Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18, 10–19 (1985)
Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40, 269–276 (1991)
Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)
Basin, D., Matthews, S., Viganó, L.: Natural deduction for non-classical logics. Studia Logica 60, 119–160 (1998)
Rasmussen, T.M.: Labelled natural deduction for interval logics. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 308–323. Springer, Heidelberg (2001)
Zhou Chaochen, M.R., Hansen, Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993)
Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice Hall (1996)
Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc. (1967)
Gabbay, D.M.: Labelled deductive systems. vol. 1. Oxford University Press (1996)
Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers (2000)
Dutertre, B.: Complete proof systems for first order interval temporal logic. In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science, LICS 1995, p. 36. IEEE Computer Society, Washington, DC (1995)
van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer (2007)
Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic based on Regions and Connection. In: Proc. 3rd Int’l Conf. on Knowledge Representation and Reasoning (1992)
Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier (2003)
Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh (1994)
Caleiro, C., Sernadas, A., Sernadas, C.: Fibring logics: Past, present and future. In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 363–388 (2005)
Rasga, J., Sernadas, A., Sernadas, C., Viganó, L.: Fibring labelled deduction systems. Journal of Logic and Computation 12, 443–473 (2002)
Paulson, L.: Isabelle: A Generic Theorem Prover. Springer (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Linker, S., Hilscher, M. (2013). Proof Theory of a Multi-Lane Spatial Logic. In: Liu, Z., Woodcock, J., Zhu, H. (eds) Theoretical Aspects of Computing – ICTAC 2013. ICTAC 2013. Lecture Notes in Computer Science, vol 8049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39718-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-39718-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39717-2
Online ISBN: 978-3-642-39718-9
eBook Packages: Computer ScienceComputer Science (R0)