Skip to main content

Spatio-temporal Hybrid Automata for Cyber-Physical Systems

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2013 (ICTAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8049))

Included in the following conference series:

Abstract

Cyber-Physical Systems (CPSs) integrate computing, communication and control processes. Close interactions between the cyber and physical worlds occur in time and space frequently. Therefore, both temporal and spatial information should be taken into consideration when modeling CPS systems. However, how we can capture temporal and spatial information into CPS models that allow describing the logical properties and constraints is still an unsolved problem in the CPS. In this paper, a spatio-temporal logic is provided, including the syntax and semantics, for describing the logical properties and constraints. Based on the logic, we propose an extended hybrid automaton, spatio-temporal hybrid automaton for CPSs. The automaton increases the ability to express spatial variables, spatial expression and related constraints on spatial terms. Then, we define formal semantics of spatio-temporal hybrid automata based on labeled transition systems. At the end of this paper, a Train Control System is introduced as a case study to show how to model the system behavior with spatio-temporal hybrid automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems Specification. Springer (1992)

    Google Scholar 

  2. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining Spatial and Temporal Logics. Journal of Artificial Intelligence Research, 167–243 (2005)

    Google Scholar 

  3. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (2008)

    Google Scholar 

  4. Shao, Z., Liu, J., Ding, Z., Chen, M., Jiang, N.: Spatio-Temporal Properties Analysis for Cyber-Physical Systems. In: Proceedings of the 18th International Conference on Engineering of Complex Computer Systems, ICECCS 2013 (2013)

    Google Scholar 

  5. IEEE, IEEE Recommended Practice for Communications-Based Train Control (CBTC) System Design and Functional Allocations. IEEE Std 1474.3-2008 (2008)

    Google Scholar 

  6. Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., Jezequel, J.: A dynamic component model for cyber physical systems. In: Proceedings of the 15th ACM SIGSOFT Symposium on Component Based Software Engineering, pp. 135–144 (2012)

    Google Scholar 

  7. Chomicki, J.: Temporal query language: a survey. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 506–534. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press (1995)

    Google Scholar 

  9. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)

    Google Scholar 

  10. Stone, M.H.: Application of the theory of Boolean rings to general topology. Transactions of the AMS 41, 321–364 (1937)

    Article  Google Scholar 

  11. Chen, T.: Algebraic postulates and a geometric interpretation of the Lewis calculus of strict implication. Bulletin of the AMS 44, 737–744 (1938)

    Article  Google Scholar 

  12. Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. Journal of Logic, Language and Information 1(3), 203–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. McKinsey, J.C.C.: A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic 6(4), 117–134 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: Proceedings of the 7th Conference on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 3–14 (2000)

    Google Scholar 

  15. Egenhofer, M.J., Herring, J.R.: Categorizing topological relationships between regions, lines and points in geographic databases. Tech. rep., University of Maine (1991)

    Google Scholar 

  16. Wolper, P.: Expressing interesting properties of programs in propositional temporal logic. In: Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 184–192 (1986)

    Google Scholar 

  17. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems, 244–263 (1986)

    Google Scholar 

  18. Reynolds, M.: The complexity of the temporal logic with until over general linear time. Journal of Computer and System Sciences 66(2), 393–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the ACM 32(3), 733–749 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Alexander, C., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  21. Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science, LICS 1996, pp. 278–292 (1996)

    Google Scholar 

  22. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1993. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  23. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. ACM SIGBED Review 8(2), 31–34 (2011)

    Article  Google Scholar 

  24. Gupta, R.: Programming models and methods for spatiotemporal actions and reasoning in cyber-physical systems. In: NSF Workshop on CPS (2006)

    Google Scholar 

  25. Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shao, Z., Liu, J. (2013). Spatio-temporal Hybrid Automata for Cyber-Physical Systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds) Theoretical Aspects of Computing – ICTAC 2013. ICTAC 2013. Lecture Notes in Computer Science, vol 8049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39718-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39718-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39717-2

  • Online ISBN: 978-3-642-39718-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics