Abstract
In this paper, we present an ensemble method for the biclustering problem that uses optimization techniques to generate consensus. Experiments have shown that the proposed method provides superior bi-clusters than the existing bi-clustering solutions most of the times. Bi-clustering problem has many applications including analysis of gene expression data.
This project is supported by University of Delhi.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. In: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. Sven.Bergmann@weizmann.ac.il, vol. 67 (March 2003)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: International Conference of Intelligent Systems Molecular Biology, pp. 93–103 (2000)
Gupta, N., Aggarwal, S.: Mib: Using mutual information for biclustering gene expression data. Elsevier Journal of Pattern Recognition 43, 2692–2697 (2010)
Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)
Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. In: Proceedings of ISMB 2002, pp. 136–144 (2002)
Srinivasan, G.: Operations Research: Principles and Applications. Prentice-Hall of India (2002)
Krumpelman, C., Ghosh, J.: Matching and visualization of multiple overlapping clusterings of microarray data. In: CIBCB 2007, pp. 121–126 (2007)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090–1099 (2003)
Fischer, B., Buhmann, J.M.: Bagging for path-based clustering. In: IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, pp. 1411–1415. IEEE Computer Society, Washington, DC (2003)
Hanczar, B., Nadif, M.: Using the bagging approach for biclustering of gene expression data, vol. 74, pp. 1595–1605. Elsevier Science Publishers B.V, Amsterdam (2011)
Moreau, J.V., Jain, A.K.: The bootstrap approach to clustering. In: Proc. of the NATO Advanced Study Institute on Pattern Recognition Theory and Applications, pp. 63–71. Springer, London (1987)
Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)
Fred, A.L.N.: Data Clustering Using Evidence Accumulation. In: Proc. of the 16th Int’l Conference on Pattern Recognition, pp. 276–280 (2002)
Hu, X., Yoo, I.: Cluster ensemble and its applications in gene expression analysis. In: Proceedings of the Second Conference on Asia-Pacific Bioinformatics, APBC 2004, vol. 29, pp. 297–302. Australian Computer Society, Inc., Darlinghurst (2004)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)
Strehl, A., Ghosh, J.: Cluster ensembles – A knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (JMLR) 3, 583–617 (2002)
Topchy, A., Jain, A.K., Punch, W.: Combining multiple weak clusterings. In: ICDM, pp. 331–338 (2003)
Topchy, A.P., Bidgoli, B.M., Jain, A.K., Punch, W.F.: Adaptive clustering ensembles. In: ICPR, pp. 272–275 (2004)
Ghaemi, R., Sulaiman, N., Ibrahim, H., Mustapha, N.: A survey: Clustering ensembles techniques. In: World Academy of Science, Engineering and Technology, vol. 38 (2009)
Gullo, F., Domeniconi, C., Tagarelli, A.: Projective clustering ensembles. In: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM 2009, pp. 794–799. IEEE Computer Society, Washington, DC (2009)
Singh, V., Mukherjee, L., Peng, J., Xu, J.: Ensemble clustering using semidefinite programming with applications. Mach. Learn. 79(1-2), 177–200 (2010)
Wang, P., Laskey, K.B., Domeniconi, C., Jordan, M.: Nonparametric bayesian co-clustering ensembles. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011, April 28-30, pp. 331–342. SIAM / Omnipress, Mesa (2011)
Ben-Dor, A., Chor, B., Karp, R.M., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving submatrix problem. Journal of Computational Biology 10(3/4), 373–384 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aggarwal, G., Gupta, N. (2013). BiETopti-BiClustering Ensemble Using Optimization Techniques. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2013. Lecture Notes in Computer Science(), vol 7987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39736-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-39736-3_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39735-6
Online ISBN: 978-3-642-39736-3
eBook Packages: Computer ScienceComputer Science (R0)