Skip to main content

FCM-GUI: A Graphical User Interface for Big Bang-Big Crunch Learning of FCM

  • Chapter
  • First Online:
Fuzzy Cognitive Maps for Applied Sciences and Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 54))

Abstract

Modeling of complex dynamic systems, for which establishing mathematical models is very complicated, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. On one hand, Fuzzy Cognitive Maps (FCMs) are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. On the other hand, human experts are subjective and can handle only relatively simple FCMs; therefore, there is a need of developing novel approaches for an automated generation of FCMs using historical data. Although, many novel learning algorithms are published in literature, there is no software existing that especially focuses on a learning method for FCMs. In order to fill this gap, and to help researchers and developers in social sciences, medicine and engineering, a graphical user interface (GUI) is designed. Since the interest of developing software or a GUI in Matlab is increasing within the last years, the proposed FCM-GUI is developed using Matlab. In this study, a new optimization algorithm, which is called Big Bang-Big Crunch (BB-BC), is proposed for an automated generation of FCMs from data. Two real-world examples; namely an ERM maintenance risk model and a synthetic model generated by the proposed FCI-GUI are used to emphasize the effectiveness and usefulness of the proposed methodology. The results of the studied examples show the efficiency of the developed FCM-GUI for design, simulation and learning of FCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Axelrod, R.: Structure of decision: The cognitive maps of political elites. Princeton University Press, Princeton (1976)

    Google Scholar 

  2. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Machine Studies 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  3. Aguilar, J.: A survey about fuzzy cognitive maps papers. Int. J. Comput. Cogn. 3(2), 27–33 (2005)

    Google Scholar 

  4. Alizadeh, S., Ghazanfari, M.: Learning FCM by chaotic simulated annealing. Chaos Solutions Fractals 41(3), 1182–1190 (2009)

    Article  Google Scholar 

  5. Yesil, E., Urbas, L.: Big Bang-Big crunch learning method for fuzzy cognitive maps. World Acad. Sci. Eng. Technol. 71, 815–824 (2010)

    Google Scholar 

  6. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)

    Article  Google Scholar 

  7. Stylios, C.D., Groumpos, P.P.: Modeling complex systems using fuzzy cognitive maps. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(1), 155–162 (2004)

    Article  Google Scholar 

  8. Stylios, C.D., Groumpos, P.P.: The challenge of modelling supervisory systems using fuzzy cognitive maps. J. Intell. Manufact. 9, 339–345 (1998)

    Article  Google Scholar 

  9. Papageorgiou, E.I., Stylios, C., Groumpos, P.: Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int. J. Hum. Comput. Studies 64, 727–743 (2006)

    Article  Google Scholar 

  10. Lee, S., Ahn, H.: Fuzzy cognitive map based on structural equation modeling for the design of controls in business-to-consumer e-commerce web-based systems. Expert Syst. Appl. 36(7), 10447–10460 (2009)

    Article  Google Scholar 

  11. Glykas, M.: Fuzzy cognitive strategic maps in business process performance measurement. Expert Syst. Appl. 40(1), 1–14 (2013)

    Article  Google Scholar 

  12. Papageorgiou, E.I., Roo, J.D., Huszka, C., Colaert, D.: Formalization of treatment guidelines using fuzzy cognitive mapping and semantic web tools. J. Biomed. Inform. 45(1), 45–60 (2012)

    Article  Google Scholar 

  13. Papageorgiou, E.I., Froelich, W.: Application of evolutionary fuzzy cognitive maps for prediction of pulmonary infections. IEEE Trans. Inform. Technol. Biomed. 16(1), 143–149 (2012)

    Article  Google Scholar 

  14. Papageorgiou, E.I.: A new methodology for Decisions in Medical Informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Appl.Soft Comput. 11(1), 500–513 (2011)

    Article  Google Scholar 

  15. Motlagh, O., Tang, S.H., Ismail, N., Ramli, A.R.: An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets Syst. 201, 105–121 (2012)

    Article  MathSciNet  Google Scholar 

  16. Motlagh, O., Tang, S.H., Ramli, A.R., Nakhaeinia, D.: An FCM modeling for using a priori knowledge: application study in modeling quadruped walking. Neural Comput. Appl. 21(5), 1007–1015 (2012)

    Article  Google Scholar 

  17. Kok, K.: The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil. Global Environ. Change 19(1), 122–133 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ramsey, D.S.L., Forsyth, D.M., Veltman, C.J., Nicol, S.J., Todd, C.R., Allen, R.B., Allen, W.J., Bellingham, P.J., Richardson, S.J., Jacobson, C.L., Barker, R.J.: An approximate Bayesian algorithm for training fuzzy cognitive map models of forest responses to deer control in a New Zealand adaptive management experiment. Ecol. Model. 240, 93–104 (2012)

    Article  Google Scholar 

  19. Buyukozkan, G., Vardaloglu, Z.: Analyzing of CPFR success factors using fuzzy cognitive maps in retail industry. Expert Syst. Appl. 39(12), 10438–10455 (2012)

    Article  Google Scholar 

  20. Lee, K.C., Lee, S.: A causal knowledge-based expert system for planning an Internet-based stock trading system. Expert Syst. Appl. 39(10), 8626–8635 (2012)

    Article  Google Scholar 

  21. Dickerson, J.A., Cox, Z., Wurtele, E.S., Fulmer, A.W.: Creating metabolic and regulatory network models using fuzzy cognitive maps. In: North American Fuzzy Information Processing Conference (NAFIPS), vol. 4, pp. 2171–2176 (2001)

    Google Scholar 

  22. Wildenberg, M., Bachhofer, M., Adamescu, M., De Blust, G., Diaz-Delgadod, R., Isak, K., Skov, F., Varjopuro, R.: Linking thoughts to flows-fuzzy cognitive mapping as tool for integrated landscape modelling. In: Proceedings of the 2010 International Conference on Integrative Landscape Modelling-Linking Environmental, Social and Computer Sciences, pp. 1–15. Montpellier (2010)

    Google Scholar 

  23. http://www.ochoadeaspuru.com/fuzcogmap

  24. Jose, A., Contreras, J.: The FCM designer tool, fuzzy cognitive maps: advances in theory, methodologies. In: Michael G. (ed.) Tools and Application, pp. 71–88. Springer (2010)

    Google Scholar 

  25. Borrie, D., Isnandar, S., Ozveren, C.S.: The use of fuzzy cognitive agents to simulate trading patterns within the liberalised UK electricity market. In: Proceedings of the 41st International Universities Power Engineering Conference (UPEC ’06), vol. 3, pp. 1077–1081 (2006)

    Google Scholar 

  26. Papaioannou, M., Neocleous, C., Sofokleous, A., Mateou, N., Andreou, A., Schizas, C.N.: A generic tool for building fuzzy cognitive map systems. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations 339, IFIP Advances in Information and Communication Technology, pp. 45–52. Springer (2010)

    Google Scholar 

  27. Bhatia, N., Kapoor, N.: Fuzzy cognitive map based approach for software quality risk analysis. ACM SIGSOFT Softw. Eng. Note 36(6), 1–9 (2011)

    Article  Google Scholar 

  28. Papageorgiou, E.I.: Fuzzy cognitive map software tool for treatment management of uncomplicated urinary tract infection. Comput. Methods Programs Biomed. 105(3), 233–245 (2012)

    Article  Google Scholar 

  29. Khan, M., Chong, A.: Fuzzy cognitive map analysis with genetic algorithm. In: Proceedings of the 1st Indian international conference on Artificial Intelligence (IICAI-03) (2003)

    Google Scholar 

  30. Kosko, B.: Neural Networks and Fuzzy Systems. Englewood Cliffs, Prentice-Hall (1992)

    MATH  Google Scholar 

  31. Bueno, S., Salmeron, J.L.: Benchmarking main activation functions in fuzzy cognitive maps2. Expert Syst. Appl. 36(3), 5221–5229 (2009)

    Article  Google Scholar 

  32. Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  33. Kaveh, A., Talatahari, S.: Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm. J. Constr. Steel Res. 66(3), 412–419 (2010)

    Article  Google Scholar 

  34. Kumbasar, T., Eksin, I., Guzelkaya, M., Yesil, E.: Adaptive fuzzy model based inverse controller design using BB-BC optimization algorithm. Expert Syst. Appl. 38(10), 12356–12364 (2011)

    Article  Google Scholar 

  35. Kumbasar, T., Eksin, I., Guzelkaya, M., Yesil, E.: Big Bang Big Crunch optimization method based fuzzy model inversion. In: MICAI 2008: Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 5317, pp. 732–740 (2008)

    Google Scholar 

  36. Kumbasar, T., Yesil, E., Eksin, I., Guzelkaya, M.: Inverse fuzzy model control with online adaptation via Big Bang-Big Crunch optimization. In: The 3rd International, Symposium on Communications, Control and Signal Processing (ISCCSP) (2008)

    Google Scholar 

  37. Oblak, S., Kumbasar, T., Skrjanc, I., Yesil, E.: Inverse-model predictive control based on INFUMO-BB-BC optimization. In: The 10th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2010) (2010)

    Google Scholar 

  38. Iplikci, S.: A support vector machine based control application to the experimental three-tank system. ISA Trans. 49(3), 376–386 (2010)

    Article  Google Scholar 

  39. Kumbasar, T., Eksin, I., Guzelkaya, M., Yesil, E.: Type-2 fuzzy model based controller design for neutralization processes. ISA Trans. 51(2), 277–287 (2012)

    Article  Google Scholar 

  40. Camp, C.V: Design of space trusses using Big Bang Big Crunch optimization. J. Struct. Eng. 133(7), 999–1008 (2007)

    Google Scholar 

  41. Kaveh, A., Zolghadr, A.: Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput. Struct. 102, 14–27 (2012)

    Article  Google Scholar 

  42. Genc, H.M., Erol, O.K., Eksin, I., Berber, M.F., Guleryuz, B.O.: A stochastic neighborhood search approach for airport gate assignment problem. Expert Syst. Appl. 39(1), 316–327 (2012)

    Article  Google Scholar 

  43. Stach, W., Kurgan, L., Pedrycz, W., Marek, R.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153, 371–401 (2005)

    Article  MATH  Google Scholar 

  44. Boutalis, Y., Kottas, T., Christodoulou, M.: Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans. Fuzzy Syst. 17(4), 874–889 (2009)

    Article  Google Scholar 

  45. Lopez, C., Salmeron, J.L., Lozano, S.: Software maintenance scenarios simulation with fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems, pp. 1810–1814. Taipei, Taiwan (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Yesil .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 40 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yesil, E., Urbas, L., Demirsoy, A. (2014). FCM-GUI: A Graphical User Interface for Big Bang-Big Crunch Learning of FCM. In: Papageorgiou, E. (eds) Fuzzy Cognitive Maps for Applied Sciences and Engineering. Intelligent Systems Reference Library, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39739-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39739-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39738-7

  • Online ISBN: 978-3-642-39739-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics