Skip to main content

Long Term and Room Temperature Operable Muscle-Powered Microrobot by Insect Muscle

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

This paper describes an insect muscle-powered autonomous microrobot (iPAM) which can work long-term at room temperature without any maintenance. The iPAM consisting of a DV tissue and a frame was designed on the basis of a finite element method simulation and fabricated. The iPAM moved autonomously using spontaneous contractions of a whole insect dorsal vessel (DV) and the moving velocity was accelerated temporally by adding insect hormone. These results suggest that the insect DV has a higher potential for being a biological microactuator than other biological cell-based materials. Insect dorsal vessel (DV) tissue seems well suited for chemically regulatable microactuators due to its environmental robustness and low maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanaka, Y., Morishima, Y.K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T.: Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip 6, 230–235 (2006)

    Article  Google Scholar 

  2. Morishima, K., Tanaka, Y., Ebara, M., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T.: Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sens. Act. B 119, 345–350 (2006)

    Article  Google Scholar 

  3. Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T.: An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 6, 362–368 (2006)

    Article  Google Scholar 

  4. Park, J., Kim, I.C., Baek, J., Cha, M., Kim, J., Park, S., Lee, J., Kim, B.: Micro pumping with cardiomyocyte–polymer hybrid. Lab Chip 7, 1367–1370 (2007)

    Article  Google Scholar 

  5. Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005)

    Article  Google Scholar 

  6. Feinberg, A., Feigel, A., Shevkoplyas, S., Sheehy, S., Whitesides, G., Parker, K.: Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007)

    Article  Google Scholar 

  7. Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S.H., Yoon, E.S., Chun, K., Park, S.: Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7, 1504–1508 (2007)

    Article  Google Scholar 

  8. Akiyama, Y., Iwabuchi, K., Furukawa, Y., Morishima, K.: Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9, 140–144 (2009)

    Article  Google Scholar 

  9. Akiyama, Y., Iwabuchi, K., Furukawa, Y., Morishima, K.: Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells. In: Int. Conf. Proc. Miniaturized Systems in Chemistry and Life Science, pp. 1669–1671 (2008)

    Google Scholar 

  10. Shimizu, K., Hoshino, T., Akiyama, Y., Iwabuchi, K., Akiyama, Y., Yamato, M., Okano, T., Morishima, K.: Multi-Scale Reconstruction and Performance of Insect Muscle Powered Bioactuator from Tissue to Cell Sheet. In: Proc. of IEEE RAS & EMBS Biomedical Robotics and Biomechatronics, pp. 425–430 (2010)

    Google Scholar 

  11. Krijgsman, B., Krijgsman-Berger, N.: Physiological investigations into the heart function of arthropods. The heart of Periplaneta americana. Bull. Ent. Res. 42, 143–155 (1951)

    Article  Google Scholar 

  12. Lehman, H., Murgiuc, C., Miller, T., Lee, T., Hildebrand, J.: Crustacean cardioactive peptide in the sphinx moth, Manduca sexta. Peptides 14, 735–741 (1993)

    Article  Google Scholar 

  13. Akiyama, Y., Iwabuchi, K., Furukawa, Y., Morishima, K.: Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. In: Proc. of IEEE RAS & EMBS Biomedical Robotics and Biomechatronics, pp. 501–505 (2008)

    Google Scholar 

  14. Choi, K., Rogers, J.: A photocurable poly (dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 125, 4060–4061 (2003)

    Article  Google Scholar 

  15. Suzumura, K., Funakoshi, K., Hoshino, T., Tsujimura, H., Iwabuchi, K., Akiyama, Y., Morishima, K.: A light regulated bio-micro-actuator powered by transgenic Drosophila melanogaster muscle tissue. In: Proc. of IEEE MEMS Micro Electro Mechanical Systems (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akiyama, Y., Iwabuchi, K., Morishima, K. (2013). Long Term and Room Temperature Operable Muscle-Powered Microrobot by Insect Muscle. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics