Skip to main content

Three-Dimensional Tubular Self-assembling Structure for Bio-hybrid Actuation

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

This work aims at reporting an innovative approach towards the development of a three-dimensional cell-based bio-hybrid actuator. The system, made of polydimethylsiloxane and based on a stress-induced rolling membrane technique, was provided with different elastic moduli (achieved by varying the monomer/curing agent ratio), with proper surface micro-topographies and with a proper surface chemical functionalization to assure a long-term stable protein coating. Finite element modeling allowed to correlate the overall contraction of the polymeric structure along its main axis (caused by properly modeled muscle cell contraction forces) with substrate thickness and with matrix mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zupan, M., Ashby, M.F., Fleck, N.A.: Actuator classification and selection – the development of a database. Adv. Eng. Mat. 4, 933–939 (2002)

    Article  Google Scholar 

  2. Pons, J.L.: Emerging actuator technologies: a micromechatronic approach. John Wiley & Sons Ltd., Chichester (2005)

    Book  Google Scholar 

  3. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Nat. Acad. Sci. 108, 20400–20403 (2011)

    Article  Google Scholar 

  4. Dario, P., Verschure, P.F.M.J., Prescott, T., Cheng, G., Sandini, G., Cingolani, R., Dillmann, R., Floreano, D., Leroux, C., MacNeil, S., Roelfsema, P., Verykios, X., Bicchi, A., Melhuish, C., Albu-Schaffer., A.: Robot companions for citizens. In: Proc. FET Conf. Exhib., Proc. Comp. Sci., vol. 7, pp. 47–51 (2011)

    Google Scholar 

  5. Ricotti, L., Menciassi, A.: Bio-hybrid muscle cell-based actuators. Biomed. Microdev. 14, 987–998 (2012)

    Article  Google Scholar 

  6. Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehab. 1 (2004), doi:10.1186/1743-0003-1-6

    Google Scholar 

  7. Xi, A.J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mat. 4, 180–184 (2005)

    Article  Google Scholar 

  8. Tanaka, A.Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T.: An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 6, 362–368 (2006)

    Article  Google Scholar 

  9. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007)

    Article  Google Scholar 

  10. Akiyama, A., Iwabuchi, K., Furukawa, Y., Morishima, K.: Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9, 140–144 (2009)

    Article  Google Scholar 

  11. Fujita, H., Dau, V.T., Shimizu, K., Hatsuda, R., Sugiyama, S., Nagamori, E.: Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed. Microdev. 13, 123–129 (2011)

    Article  Google Scholar 

  12. Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11, 513–517 (2011)

    Article  Google Scholar 

  13. Sakar, M.S., Neal, D., Boudou, T., Borochin, M.A., Li, Y., Weiss, R., Kamm, R.D., Chen, C.S., Asada, H.H.: Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12, 4976–4985 (2012)

    Article  Google Scholar 

  14. Yuan, B., Jin, Y., Sun, Y., Wang, D., Sun, J., Wang, Z., Zhang, W., Jiang, X.: A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv. Mat. 24, 890–896 (2012)

    Article  Google Scholar 

  15. Genchi, G.G., Ciofani, G., Liakos, I., Ricotti, L., Ceseracciu, L., Athanassiou, A., Mazzolai, B., Menciassi, A., Mattoli, V.: Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Coll. Surf. B: Biointerf. 105, 144–151 (2013)

    Article  Google Scholar 

  16. Lin, G., Pister, K.S.J., Roos, K.P.: Surface micromachined polysilicon heart cell force transducer. J. Micromech. Syst. 9, 9–17 (2000)

    Article  Google Scholar 

  17. Shimizu, K., Sasaki, H., Hida, H., Fujita, H., Obinata, K., Shikida, M., Nagamori, E.: Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomed. Microdev. 12, 247–252 (2010)

    Article  Google Scholar 

  18. Charest, J.L., García, A.J., King, W.P.: Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 28, 2202–2210 (2007)

    Article  Google Scholar 

  19. Okano, T., Satoh, S., Oka, T., Matsuda, T.: Tissue engineering of skeletal muscle: highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43, M749–M753 (1997)

    Google Scholar 

  20. Engler, A.J., Griffin, M.A., Sen, S., Bönnemann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166, 877–887 (2004)

    Article  Google Scholar 

  21. Ricotti, L., Taccola, S., Pensabene, V., Mattoli, V., Fujie, T., Takeoka, S., Men-ciassi, A., Dario, P.: Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomed. Microdev. 12, 809–819 (2010)

    Article  Google Scholar 

  22. Cooper, S.T., Maxwell, A.L., Kizana, E., Ghoddusi, M., Hardeman, E.C., Alexander, I.E., Allen, D.G., North, K.N.: C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression. Cytoskeleton 58, 200–211 (2004)

    Article  Google Scholar 

  23. Greco, F., Fujie, T., Ricotti, L., Taccola, S., Mazzolai, B., Mattoli, V.: Microwrinkled conducting polymer interface for anisotropic multicellular alignment. Appl. Mat. Interf. 5, 573–584 (2013)

    Article  Google Scholar 

  24. Woledge, R.C., Curtin, N.A., Homsher, E.: Energetic aspects of muscle contrac-tion. Academic Press, Bellington (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ricotti, L., Vannozzi, L., Dario, P., Menciassi, A. (2013). Three-Dimensional Tubular Self-assembling Structure for Bio-hybrid Actuation. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics