Skip to main content

Encoding of Stimuli in Embodied Neuronal Networks

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

Information coding in the central nervous system is still, under many aspects, a mystery. In this work, we made use of cortical and hippocampal cultures plated on micro-electrode arrays and embedded in a hybrid neuro-robotic platform to investigate the basis of “sensory” coding in neuronal cell assemblies. First, we asked which features of the observed spike trains (e.g. spikes, bursts, doublets) may be used to reconstruct significant portions of the input signal, coded as a low-frequency train of stimulations, through optimal linear reconstruction techniques. We also wondered whether preparations of cortical or hippocampal cells might present different coding representations. Our results pointed out that identifying specific signal structures within the spike train does not improve reconstruction performance. We found, instead, differences tied to the cell type of the preparation, with cortical cultures showing less segregated responses than hippocampal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  2. Kriegstein, A.R., Dichter, M.A.: Morphological classification of rat cortical neurons in cell culture. J. Neurosci. 3, 1634–1647 (1983)

    Google Scholar 

  3. Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., Potter, S.M.: Removing Some ‘A’ from AI: Embodied Cultured Networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 130–145. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Mulas, M., Massobrio, P., Martinoia, S., Chiappalone, M.: A simulated neuro-robotic environment for bi-directional closed-loop experiments. Paladyn. Journal of Behavioral Robotics 1, 179–186 (2010)

    Article  Google Scholar 

  5. Warwick, D., Xydas, S.J., Nasuto, V.M., Becerra, M.W., Hammond, J.H., Downes, S., Marshall, B.J.: Controlling a Mobile Robot with a Biological Brain. Defence Sci. J. 60, 5–14 (2010)

    Google Scholar 

  6. Metzner, W., Koch, C., Wessel, R., Gabbiani, F.: Feature extraction by burst-like spike patterns in multiple sensory maps. J. Neurosci. 18, 2283–2300 (1998)

    Google Scholar 

  7. Reinagel, P., Godwin, D., Sherman, S.M., Koch, C.: Encoding of visual information by LGN bursts. Journal Neurophys. 81, 2558–2569 (1999)

    Google Scholar 

  8. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. PNAS 99, 13920–13925 (2002)

    Article  Google Scholar 

  9. Krahe, R., Gabbiani, F.: Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004)

    Article  Google Scholar 

  10. Tessadori, J., Bisio, M., Martinoia, S., Chiappalone, M.: Modular neuronal assemblies embodied in a closed-loop environment: toward future integration of brains and machines. Front Neural Circuits 6, 99 (2012)

    Article  Google Scholar 

  11. Frega, M., Pasquale, V., Tedesco, M., Marcoli, M., Contestabile, A., Nanni, M., Bonzano, L., Maura, G., Chiappalone, M.: Cortical cultures coupled to Micro-Electrode Arrays: a novel approach to perform in vitro excitotoxicity testing. Neurotoxicol Teratol 34, 116–127 (2012)

    Article  Google Scholar 

  12. Cozzi, L., D’Angelo, P., Sanguineti, V.: Encoding of time-varying stimuli in populations of cultured neurons. Biol. Cybern. 94, 335–349 (2006)

    Article  MATH  Google Scholar 

  13. Braitenberg, V.: Vehicles - Experiments in synthetic psychology. The MIT Press, Cambridge (1984)

    Google Scholar 

  14. Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., Chiappalone, M.: A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. J. Neurosci. Methods 177, 241–249 (2009)

    Article  Google Scholar 

  15. Rolston, J.D., Wagenaar, D.A., Potter, S.M.: Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience 148, 294–303 (2007)

    Article  Google Scholar 

  16. Shahaf, G., Marom, S.: Learning in networks of cortical neurons. J. Neurosci. 21, 8782–8788 (2001)

    Google Scholar 

  17. Eytan, D., Marom, S.: Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476 (2006)

    Article  Google Scholar 

  18. Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., Van Pelt, J.: Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing 65, 653–662 (2005)

    Article  Google Scholar 

  19. Turnbull, L., Dian, E., Gross, G.: The string method of burst identification in neuronal spike trains. J. Neurosci. Methods 145, 23–35 (2005)

    Article  Google Scholar 

  20. Gabbiani, F., Metzner, W., Wessel, R., Koch, C.: From stimulus encoding to feature extraction in weakly electric fish. Nature 384, 564–567 (1996)

    Article  Google Scholar 

  21. Rieke, F., Warland, D., De Ruyter van Steveninck, R., Spikes, W.B.: Exploring the neural code. MIT press, Cambridge (1997)

    Google Scholar 

  22. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15, 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  23. Leondopulos, S.S., Boehler, M.D., Wheeler, B.C., Brewer, G.J.: Chronic stimulation of cultured neuronal networks boosts low-frequency oscillatory activity at theta and gamma with spikes phase-locked to gamma frequencies. J. Neural Eng. 9, 026015 (2012)

    Google Scholar 

  24. Levy, O., Ziv, N.E., Marom, S.: Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. Eu. J. Neurosci. 35, 1753–1760 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tessadori, J., Venuta, D., Pasquale, V., Kumar, S.S., Chiappalone, M. (2013). Encoding of Stimuli in Embodied Neuronal Networks. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics