Skip to main content

Stable Heteroclinic Channels for Slip Control of a Peristaltic Crawling Robot

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

Stable Heteroclinic Channels (SHCs) are continuous dynamical systems capable of generating rhythmic output of varying period in response to sensory inputs or noise. This feature can be used to control state transitions smoothly. We demonstrate this type of controller in a dynamic simulation of a worm-like robot crawling through a pipe with a narrowing in radius. Our SHC controller allows for improved adaptation to a change in pipe diameter with more rapid movement and less energy loss. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007)

    Article  Google Scholar 

  2. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21, 642–653 (2008)

    Article  Google Scholar 

  3. Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: A controller for continuous wave peristaltic locomotion. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 197–202 (2011)

    Google Scholar 

  4. Boxerbaum, A.S., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: A Soft-Body Controller With Ubiquitous Sensor Feedback. In: Proc. 1st Int. Conf. on Living Machines (2012)

    Google Scholar 

  5. Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Phil. Soc. 103, 189–192 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos: An Interdisciplinary Journal of Nonlinear Science 14, 1123–1129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Laurent, G., Stopfer, M., Friedrich, W., Rabinovich, M.I., Volkovskii, A., Abarbanel, H.D.I.: Odor Encoding as an Active, Dynamical Process: Experiments, Computations and Theory. Ann. Rev. Neuro. 24, 263–297 (2001)

    Article  Google Scholar 

  8. Shaw, K.M., Park, Y.-M., Chiel, H.J., Thomas, P.J.: Phase Resetting in an Asymptotically Phaseless System: On the Phase Response of Limit Cycles Verging on a Heteroclinic Orbit. SIAM Journal on Applied Dynamical Systems 11, 350–391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rabinovich, M., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology 4, e1000072 (2008)

    Article  MathSciNet  Google Scholar 

  10. Gause, G.F.: Experimental Studies on the Struggle for Existence. J. Exp. Biol. 9, 389–402 (1932)

    Google Scholar 

  11. Gilpin, M.E.: Limit Cycles in Competition Communities. The American Naturalist 109, 51–60 (1975)

    Article  Google Scholar 

  12. May, R., Leonard, W.: Nonlinear aspects of competition between three species. SIAM Journal of Applied Mathematics 29, 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Afraimovich, V., Tristan, I., Huerta, R., Rabinovich, M.I.: Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 043103 (2008)

    Google Scholar 

  14. Neves, F.S., Timme, M.: Controlled perturbation-induced switching in pulse-coupled oscillator networks. J. Phys. A: Math. Theor. 42, 345103 (2009)

    Article  MathSciNet  Google Scholar 

  15. Nowotny, T., Rabinovich, M.I.: Dynamical Origin of Independent Spiking and Bursting Activity in Neural Microcircuits. Phys. Rev. Lett. 98, 128106 (2007)

    Article  Google Scholar 

  16. Ashwin, P., Karabacak, O.: Robust Heteroclinic Behaviour, Synchronization, and Ratcheting of Coupled Oscillators. Dynamics, Games and Science II 2, 125–140 (2011)

    Article  MathSciNet  Google Scholar 

  17. McInnes, C., Brown, B.: A dynamical systems approach to micro-spacecraft autonomy. Proc. 20th AAS/AIAA Space Flight Mechanics Meeting 136, 1199–1218 (2010)

    Google Scholar 

  18. Li, D., Cross, M.C., Zhou, C., Zheng, Z.: Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles. Phys. Rev. E 85, 016215 (2012)

    Google Scholar 

  19. Shaw, K.M., Cullins, M.J., Lu, H., McManus, J.M., Thomas, P.J., Chiel, H.J.: Investigating localized sensitivity in the feeding patterns of Aplysia californica. In: Front. Behav. Neurosci. Conference Abstract: 10th Int. Congress of Neuroethology (2012)

    Google Scholar 

  20. Webster, V.A., Lonsberry, A.J., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: A Segmental Mobile Robot with Active Tensegrity Bending and Noise-driven Oscillators. In: Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, July 9-12 (2013)

    Google Scholar 

  21. Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration & Biomimetics (2013) (in review)

    Google Scholar 

  22. Boxerbaum, A.S., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Continuous wave peristaltic motion in a robot. International Journal of Robotics Research 31, 302–318 (2012)

    Article  Google Scholar 

  23. Horchler, A.D.: SHCTools: Matlab ToolBox for Simulation, Analysis, and Design of Stable Heteroclinic Channel Networks, Version 1.1. GitHub (2013), http://github.com/horchler/SHCTools (accessed May 2013)

  24. Stone, E., Holmes, P.: Random Perturbations of Heteroclinic Attractors. SIAM Journal of Applied Mathematics 50, 726–743 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moore, A.R.: Muscle tension and reflexes in earthworm. The Journal of General Physiology 5, 327–333 (1923)

    Article  Google Scholar 

  26. Gray, B.Y.J., Lissmann, H.W.: Studies in Animal Locomotion VII: Locomotory Reflexes in the Earthworm. Journal of Experimental Biology 15, 518–521 (1938)

    Google Scholar 

  27. Quillin, K.: Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris. The Journal of Experimental Biology 201, 1871–1883 (1998)

    Google Scholar 

  28. Omori, H., Murakami, T., Nagai, H., Nakamura, T.: Kubota.: Planetary Subsurface Explorer Robot with Propulsion Units for Peristaltic Crawling. In: IEEE Int. Conf. on Robotics and Automation, pp. 649–654 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daltorio, K.A., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D. (2013). Stable Heteroclinic Channels for Slip Control of a Peristaltic Crawling Robot. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics