Abstract
Even though much research has been devoted on real-time data warehousing, most of it ignores business concerns that underlie all uses of such data. The complete Business Intelligence (BI) problem begins with modeling and analysis of business objectives and specifications, followed by a systematic derivation of real-time BI queries on warehouse data. In this position paper, we motivate the need for the development of a complete Real Time BI stack able to continuously evaluate and reason about strategic objectives. We argue that an integrated system, able to receive formal specifications of the organization’s strategic objectives and to transform them into a set of queries that are continuously evaluated against the warehouse, offers significant benefits. In this context, we propose the development of a set of real-time query answering mechanisms able to identify warehouse segments with temporal patterns of special interest, as well as novel techniques for mining warehouse regions that represent expected, or unexpected threats and opportunities. With such a vision in mind, we propose an architecture for such a framework, and discuss relevant challenges and research directions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite indicators for business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg (2011)
Chamoni, P., Stock, S.: Temporal structures in data warehousing. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 353–358. Springer, Heidelberg (1999)
Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Record 26(1) (March 1997)
Chen, B., Ramakrishnan, R., Shavlik, J.W., Tamma, P.: Bellwether analysis: Searching for cost-effective query-defined predictors in large databases. ACM TKDD 3(1) (March 2009)
Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-dimensional regression analysis of time-series data streams. In: VLDB, vol. 02 (2002)
Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line Analytical Processing) to User-analysts: An IT Mandate, vol. 32. Codd & Date, Inc. (1993)
Drucker, P.F.: The age of discontinuity: Guidelines to our changing society. Harper and Row, New York (1968)
Golfarelli, M.: A survey on temporal data warehousing. International Journal of Data Warehousing 5 (2009)
Gupta, C., Wang, S., Ari, I., Hao, M.: Chaos: A data stream analysis architecture for enterprise applications. In: CEC (2009)
Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel Databases 18(2) (2005)
Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer (2003)
Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011)
Karakasidis, A., Vassiliadis, P., Pitoura, E.: ETL queues for active data warehousing. In: IQIS 2005 (2005)
Lamb, R.: Competitive strategic management. Prentice-Hall, Englewood Cliffs (1984)
Li, X., Han, J.: Mining approximate top-k subspace anomalies in multi-dimensional time-series data. In: VLDB (2007)
Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in OLAP. In: Proceedings of the 26th International Conference on Very Large Databases (2000)
Middelfart, M.: Improving business intelligence speed and quality through the ooda concept. In: DOLAP 2007 (2007)
Middelfart, M., Bach Pedersen, T.: The meta-morphing model used in TARGIT BI suite. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 364–370. Springer, Heidelberg (2011)
Middelfart, M., Pedersen, T.B.: Implementing sentinels in the targit bi suite. In: ICDE (2011)
Nag, R., Hambrick, D.C.: What is strategic management, really? Inductive derivation of a consensus definition of the field. Strategic Management, 955 (2007)
Palpanas, T., Chowdhary, P., Mihaila, G., Pinel, F.: Integrated model-driven dashboard development. ISF 9(2-3) (July 2007)
Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental maintenance for non-distributive aggregate functions. In: VLDB (2002)
Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.E.: Supporting Streaming Updates in an Active Data Warehouse. In: ICDE (2007)
Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-Driven Exploration of OLAP Data Cubes. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 168–182. Springer, Heidelberg (1998)
Souza, V.E.S., GarrigĂłs, I., Trujillo, J.: Monitoring Strategic Goals in Data Warehouses with Awareness Requirements. In: ACM Symposium on Applied Computing (2012)
Vassiliadis, P., Simitsis, A., Georgantas, P.: A generic and customizable framework for the design of ETL scenarios. Information Systems (2005)
Watson, H.J., Wixom, B.H., Hoffer, J.A., Anderson-Lehman, R., Reynolds, A.M.: Real-time business intelligence: Best practices at continental airlines. Information Systems Management 23(1) (2006)
Xi, R., Lin, N., Chen, Y.: Compression and aggregation for logistic regression analysis in data cubes. In: TKDE (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zoumpatianos, K., Palpanas, T., Mylopoulos, J. (2013). Strategic Management for Real-Time Business Intelligence. In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds) Enabling Real-Time Business Intelligence. BIRTE 2012. Lecture Notes in Business Information Processing, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39872-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-39872-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39871-1
Online ISBN: 978-3-642-39872-8
eBook Packages: Computer ScienceComputer Science (R0)