Skip to main content

Abstract

Human and animal behavior can be amazingly flexible and adaptive. Even when only considering the dexterity of human arm movements, a rather complex control architecture appears necessary. This control architecture faces three particular challenges, which we discuss in detail. First, sensory redundancy requires the flexible consideration, combination, and integration of different sources of information about the state of the arm and the surrounding environment. Second, motor redundancy requires the flexible consideration and resolution of behavioral alternatives. Third, the continuous uncertainty about body and environment requires flexible control strategies that take these uncertainties into account. Research in cognitive modeling as well as in psychology and neuroscience suggests that the human control system effectively solves and even partially exploits these challenges to generate the observable dexterity. Besides theoretical considerations from control and cognitive modeling perspectives, we survey the capabilities and current drawbacks of the sensorimotor redundancy resolving architecture (SURE_REACH) of human arm reaching. Moreover, we consider an even more modular model of human motor control, which is currently being developed. Both architectures can yield the dexterous behavioral control observable in humans, but only the latter scales to many degrees of freedom. Thus, the architectures may provide insights on how dexterous motor control is realized in humans and on how more adaptive and flexible robot control systems may be developed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovich, S. V., Levin, M. F., Feldman, A. G. (1997). Central modifications of reflex parameters may underlie the fastest arm movements. Neurophysiology, 77(3), 1460–1469.

    Google Scholar 

  • Barsalou, L. W., Breazeal, C., Smith, L. B. (2007). Cognition as coordinated non-cognition. Cognitive Processing, 8(1), 79–91. doi:10.1007/s10339-007-0163-1.

    Article  Google Scholar 

  • Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F., Zago, M. (2003). Multiple levels of representation of reaching in the parieto-frontal network. Cerebral Cortex, 13(10), 1009.

    Article  Google Scholar 

  • Bernier, P. M., Gauthier, G. M., Blouin, J. (2007). Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets. Journal of Neurophysiology, 98(3), 1815.

    Article  Google Scholar 

  • Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon.

    Google Scholar 

  • Birbaumer, N., & Schmidt, R. (1996). Biologische Psychologie [Biological Psychology], 3rd edn. Berlin: Springer.

    Google Scholar 

  • Bizzi, E., Polit, A., Morasso, P. (1976). Mechanisms underlying achievement of final head position. Journal of Neurophysiology, 39(2), 435–444.

    Google Scholar 

  • Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756.

    Article  Google Scholar 

  • Buneo, C., Jarvis, M., Batista, A., Andersen, R. (2002). Direct visuomotor transformations for reaching. Nature, 416(6881), 632–636.

    Article  Google Scholar 

  • Butz, M. V., Herbort, O., Hoffmann, J. (2007). Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychological Review, 114, 1015–1046.

    Article  Google Scholar 

  • Butz, M. V., & Pedersen, G. K. M. (2009). The scared robot: motivations in a simulated robot arm. 32nd Annual Conference on Artificial Intelligence, KI 2009, 460–467.

    Google Scholar 

  • Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324, 403–406.

    Article  Google Scholar 

  • Calinon, S., & Billard, A. (2009). Statistical learning by imitation of competing constraints in joint space and task space. Advanced Robotics, 23(15), 2059–2076.

    Article  Google Scholar 

  • Cruse, H. (2003). The evolution of cognition—a hypothesis. Cognitve Science, 27, 135–155.

    Google Scholar 

  • de Vignemont, F., Majid, A., Jola, C., Haggard, P. (2009). Segmenting the body into parts: evidence from biases in tactile perception. The Quarterly Journal of Experimental Psychology, 62(3), 500–512.

    Article  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7–8), 961–974.

    Article  Google Scholar 

  • Doya, K., Ishii, S., Pouget, A., Rao, R. P. N. (2007). Bayesian brain: probabilistic approaches to neural coding. Cambridge: MIT.

    Google Scholar 

  • Ehrenfeld, S., & Butz, M. V. (2011). A modular, redundant, multi-frame of reference representation for kinematic chains. In IEEE International Conference on Robotics and Automation (pp. 141–147).

    Google Scholar 

  • Ehrenfeld, S., & Butz, M. V. (2013). The modular modality frame model: continuous body state estimation and plausibility-weighted information fusion. Biological Cybernetics, 107, 61–82. doi:10.1007/s00422-012-0526-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.

    Article  Google Scholar 

  • Engelbrecht, S. E. (2001). Minimum principles in motor control. Journal of Mathematical Psychology, 45, 497–542.

    Article  MathSciNet  MATH  Google Scholar 

  • Feldman, A. G. (1966). Functional tuning of nervous system with control of movement or maintenance of a steady posture. II. Controlable parameters of the muscle. Biophysics, 11, 565–578.

    Google Scholar 

  • Feldman, A. G., & Levin, M. F. (1995). Positional frames of reference in motor control: origin and use. Behavioral and Brain Sciences, 18, 723–806.

    Article  Google Scholar 

  • Fischer, M. H., Rosenbau, D. A., Vaughan, J. (1997). Speed and sequential effects in reaching. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 404–428.

    Article  Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental PSychology, 74, 381–391.

    Article  Google Scholar 

  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.

    Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.

    Article  Google Scholar 

  • Gentner, R., & Classen, J. (2006). Modular organization of finger movements by the human central nervous system. Neuron, 52, 731–42.

    Article  Google Scholar 

  • Graziano, M. S. A. (2006). The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience, 29, 105–134.

    Article  Google Scholar 

  • Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845–859.

    Article  Google Scholar 

  • Greenwald, A. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.

    Article  Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.

    Article  Google Scholar 

  • Haruno, M., Wolpert, D., Kawato, M. (2003). Hierarchical mosaic for movement generation. In International Congress Series (vol. 1250, pp. 575–590). Amsterdam: Elsevier.

    Google Scholar 

  • Herbort, O., & Butz, M. V. (2007). Encoding complete body models enables task dependent optimal behavior. In Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, 12–17 August 2007 (pp. 1424–1429).

    Google Scholar 

  • Herbort, O., & Butz, M. V. (2010). Planning and control of hand orientation in grasping movements. Experimental Brain Research, 202, 867–878.

    Article  Google Scholar 

  • Herbort, O., & Butz, M. V. (2012). The continuous end-state comfort effect: weighted integration of multiple biases. Psychological research, 76, 345–363. doi:10.1007/s00426-011-0334-7.

    Article  Google Scholar 

  • Herbort, O., & Butz, M. V. (2011). Habitual and goal-directed factors in (everyday) object handling. Experimental Brain Research, 213, 371–382. doi:10.1007/s00221-011-2787-8.

    Article  Google Scholar 

  • Herbort, O., Butz, M. V., Hoffmann, J. (2008). Multimodal goal representations and feedback in hierarchical motor control. In Proceedings of the International Conference on Cognitive Systems 2008.

    Google Scholar 

  • Herbort, O., Butz, M. V., Pedersen, G. K. M. (2010). The SURE_REACH model for motor learning and control of a redundant arm: from modeling human behavior to applications in robotics. In O. Sigaud & J. Peters (Eds.), From motor learning to interaction learning in robots (pp. 85–106). Berlin: Springer.

    Chapter  Google Scholar 

  • Herbort, O., Ognibene, D., Butz, M. V., Baldassarre, G. (2007). Learning to select targets within targets in reaching tasks. In 6th IEEE international conference on development and learning, ICDL 2007 (pp. 7–12).

    Google Scholar 

  • Hof, A. L. (2003). Muscle mechanics and neuromuscular control. Journal of Biomechanics, 36, 1031–1038.

    Article  Google Scholar 

  • Hoffmann, H., & Möller, R. (2003). Unsupervised learning of a kinematic arm model. In O. Kaynak, E. Alpaydin, E. Oja, L. Xu (Eds.), Artificial neural networks and neural information processing—ICANN/ICONIP 2003. LNCS (vol. 2714, pp. 463–470). Berlin: Springer.

    Google Scholar 

  • Hoffmann, J. (1993). Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung. [Anticipation and cognition: The function of anticipations in human behavioral control and perception.]. Göttingen: Hogrefe.

    Google Scholar 

  • Hoffmann, J., Berner, M., Butz, M. V., Herbort, O., Kiesel, A., Kunde, W., Lenhard, A. (2007a). Explorations of anticipatory behavioral control (ABC): a report from the cognitive psychology unit of the University of Würzburg. Cognitive Processing, 8, 133–142.

    Article  Google Scholar 

  • Hoffmann, J., Butz, M., Herbort, O., Kiesel, A., Lenhard, A. (2007b). Spekulationen zur strukturideo-motorischer beziehungen. Zeitschrift für Sportpsychologie, 14(3), 95–103.

    Article  Google Scholar 

  • Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., Pfeifer, R. (2010). Body schema in robotics: a review. IEEE Transactions on Autonomous Mental Development, 2, 304 – 324.

    Article  Google Scholar 

  • Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., Kawato, M. (2003). Modular organization of internal models of tools in the human cerebellum. PNAS, 100(9), 5461–5466.

    Article  Google Scholar 

  • Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: a critique. Trends in Cognitive Sciences, 9(1), 21–25.

    Article  Google Scholar 

  • Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: from self to social cogniton. Trends in Cognitive Sciences, 11(5), 194–196.

    Article  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.

    Article  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in cognitive sciences, 11, 229–235. doi:http://dx.doi.org/10.1016/j.tics.2007.04.005.

  • Konczak, J., & Dichgans, J. (1997). The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain Research, 117, 346–354.

    Article  Google Scholar 

  • Körding, K. P., pi Ku, S., Wolpert, D. M. (2004). Bayesian integration in force estimation. Journal of Neurophysiology, 92, 3161–3165.

    Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244–247.

    Article  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. Special issue: Probabilistic models of cognition.

    Google Scholar 

  • Latash, M. L., Scholz, J. P., Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11, 276–308.

    Google Scholar 

  • Latash, M. L., & Turvey, M. T. (Eds.), (1996). Dexterity and its development. Hove: Psychology.

    Google Scholar 

  • Loeb, G. E., Brown, I. E., Cheng, E. J. (1999). A hierarchical foundation for models of sensorimotor control. Experimental Brain Research, 126, 1–18.

    Article  Google Scholar 

  • Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society: Biological Sciences, 355, 1755–1769.

    Article  Google Scholar 

  • Mussa-Ivaldi, F. A., Giszter, S. F., Bizzi, E. (1994). Linear combinations of primitives in vertebrate motor control. Proceedings of the National Academy of Sciences, 91, 7534–7538.

    Article  Google Scholar 

  • Nozaki, D., Kurtzer, I., Scott, S. H. (2006). Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neuroscience, 9(10), 1–3. Retrived October 11, 2006 from http://www.nature.com/neuro/journal/vaop/ncurrent/pdf/nn1785.pdf.

  • Polit, A., & Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiol, 42, 183–194.

    Google Scholar 

  • Pouget, A., & Snyder, L. H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience, 3, 1192–1198.

    Article  Google Scholar 

  • Rieser, J., Pick Jr, H., Ashmead, D., Garing, A. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology, 21(3), 480–497.

    Google Scholar 

  • Rosenbaum, D. A. (2008). Reaching while walking: reaching distance costs more than walking distance. Psychonomic Bulletin and Review, 15(6), 1100–1104.

    Article  Google Scholar 

  • Rosenbaum, D. A., Inhoff, A. W., Gordon, A. M. (1984). Choosing between movement sequences: a hierarchical editor models. Journal of Experimental Psychology: General, 113(3), 372–393.

    Article  Google Scholar 

  • Rosenbaum, D. A., Kenny, S. B., Derr, M. A. (1983). Hierarchical control of rapid movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 86–102.

    Article  Google Scholar 

  • Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G. J., Vaughan, J., Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102(1), 28–67.

    Article  Google Scholar 

  • Rosenbaum, D. A., Marchak, F., Barnes, H. J., than Vaughan, J., Siotta, J. D., and Jorgensen, M. J. (1990). Constraints for action selection: overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance (vol. XIII, pp. 321–345). Hillsdale, New Jersey, Hove and London: Lawrence Erlbaum Associates.

    Google Scholar 

  • Rosenbaum, D. A., Slotta, J. D., Vaughan, J., Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2, 86–91.

    Article  Google Scholar 

  • Rosenbaum, D. A., van Heugten, C. M., Caldwell, G. E. (1996). From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta Psychologica, 94, 59–85.

    Article  Google Scholar 

  • Roy, D., yuh Hsiao, K., Mavridis, N., Gorniak, P. (2006). Ripley, hand me the cup: sensorimotor representations for grounding word meaning. In International Conference of Automatic Speech Recognition and Understanding.

    Google Scholar 

  • Sarlegna, F. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258.

    Article  Google Scholar 

  • Saxe, R. (2005). Against simulation: the argument from error. Trends in Cognitive Sciences, 9(4), 174–179.

    Article  Google Scholar 

  • Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term memory. Neuroscience Letters, 391, 77–81.

    Article  Google Scholar 

  • Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.

    Article  Google Scholar 

  • Schwartz, A. B., Moran, D. W., Reina, G. A. (2004). Differential representation of perception and action in the frontal cortex. Science, 303, 380–383.

    Article  Google Scholar 

  • Serwe, S., Drewing, K., Trommershuser, J. (2009). Combination of noisy directional visual and proprioceptive information. Journal of Vision, 9, 1–14.

    Article  Google Scholar 

  • Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.

    Article  Google Scholar 

  • Shadmehr, R., & Wise, S. P. (2005). The Computational Neurobiology of Reaching and Pointing: A foundation for motor learning. Cambridge: MIT.

    Google Scholar 

  • Soechting, J. F., Buneo, C. A., Herrmann, U., Flanders, M. (1995). Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? Journal of Neuroscience, 15, 6271–6280.

    Google Scholar 

  • Tong, C., & Flanagan, J. R. (2003). Task-specific internal models for kinematic transformations. Journal of Neurophysiology, 90, 578–585.

    Article  Google Scholar 

  • Trommershäuser, J., Maloney, L. T., Landy, M. S. (2003). Statistical decision theory and the selection of rapid, goal-directed movements. Journal of the Optical Society of America A, 20, 1419–1433.

    Article  Google Scholar 

  • van Beers, R., Haggard, P., Wolpert, D. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050.

    Article  Google Scholar 

  • Van Hedel, H. J. A., Biedermann, M., Erni, T., Dietz, V. (2002). Obstacle avoidance during human walking: transfer of motor skill from one leg to the other. The Journal of Physiology, 543(2), 709.

    Article  Google Scholar 

  • Vijayakumar, S., Toussaint, M., Petkos, G., Howard, M. (2009). Planning and moving in dynamic environments. In B. Sendhoff, E. Körner, O. Sporns, H. Ritter, & K. Doya, Creating Brain-Like Intelligence. Lecture Notes in Computer Science (Vol. 5436, pp. 151–191). Berlin: Springer. doi:10.1007/978-3-642-00616-6_9.

    Google Scholar 

  • von Hofsten, C. (1980). Predictive reaching for moving objects by human infants* 1. Journal of Experimental Child Psychology, 30(3), 369–382.

    Article  Google Scholar 

  • von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.

    Article  Google Scholar 

  • Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill, Department of Computer Science.

    Google Scholar 

  • Wells, J., Hyler-Both, D., Danley, T., Wallace, G. (2002). Biomechanics of growth and development in the healthy human infant: a pilot study. JAOA: Journal of the American Osteopathic Association, 102(6), 313.

    Google Scholar 

  • Wolpert, D. M., Doya, K., Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London, 358, 593–602.

    Article  Google Scholar 

  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin V. Butz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrenfeld, S., Herbort, O., Butz, M.V. (2013). Modular, Multimodal Arm Control Models. In: Baldassarre, G., Mirolli, M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39875-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39875-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39874-2

  • Online ISBN: 978-3-642-39875-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics