Skip to main content

Practical Fully Simulatable Oblivious Transfer with Sublinear Communication

  • Conference paper
Financial Cryptography and Data Security (FC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7859))

Included in the following conference series:

  • 7979 Accesses

Abstract

During an adaptive k-out-of-N oblivious transfer (OT), a sender has N private documents, and a receiver wants to adaptively fetch k documents from them such that the sender learns nothing about the receiver’s selection and the receiver learns nothing more than those chosen documents. Many fully simulatable and universally composable adaptive OT schemes have been proposed, but those schemes typically require \(\mathcal{O}(N)\) communication in the initialization phase, which yields \(\mathcal{O}(N)\) overall communication. On the other hand, in some applications, the receiver just needs to fetch a small number of documents, so the initialization cost dominates in the entire protocol, especially for 1-out-of-N OT. We propose the first fully simulatable adaptive OT with sublinear communication under the DDH assumption in the plain model. Our scheme has \(\mathcal{O}(N^{1/2})\) communication in both the initialization phase and each transfer phase. It achieves better (amortized) overall communication complexity compared to existing schemes when \(k=\mathcal{O}(N^{1/2})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Information Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bayer, S., Groth, J.: Efficient Zero-Knowledge Argument for Correctness of a Shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs Verifiable in Polylogarithmic Time. In: CCC (2005)

    Google Scholar 

  5. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Chaum, D.: Zero-Knowledge Undeniable Signatures (extended abstract). In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  8. Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Damgård, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

    Google Scholar 

  10. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure Two-party Computation in Sublinear (amortized) Time. In: CCS (2012)

    Google Scholar 

  12. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Groth, J.: Linear Algebra with Sub-linear Zero-knowledge Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. Journal of Cryptology 23, 546–579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Groth, J.: hort Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Kurosawa, K., Nojima, R.: Simple Adaptive Oblivious Transfer Without Random Oracle. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 334–346. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Kurosawa, K., Nojima, R., Phong, L.T.: Efficiency-improved fully simulatable adaptive OT under the DDH assumption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 172–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Kurosawa, K., Nojima, R., Phong, L.T.: Generic Fully Simulatable Adaptive Oblivious Transfer. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 274–291. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: Single Database, Computationally-Private Information Retrieval. In: FOCS (1997)

    Google Scholar 

  24. Laur, S., Lipmaa, H.: On the Feasibility of Consistent Computations. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 88–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Lim, C.H.: Efficient Multi-exponentiation and Application to Batch Verification of Digital Signatures (2000), online Tech. Report: http://dasan.sejong.ac.kr/~chlim/pub/multiexp.ps

  26. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Protection in Information Processing Systems. IFIP, vol. 147, pp. 440–455. Springer, Boston (2004)

    Chapter  Google Scholar 

  30. Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryptology 18, 1–35 (2005), http://dx.doi.org/10.1007/s00145-004-0102-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  33. Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced Oblivious Transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Yao, A.: Protocols for Secure Computations (Extended Abstract). In: FOCS (1982)

    Google Scholar 

  35. Zhang, B.: Simulatable Adaptive Oblivious Transfer with Statistical Receiver’s Privacy. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 52–67. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Lipmaa, H., Wang, C., Ren, K. (2013). Practical Fully Simulatable Oblivious Transfer with Sublinear Communication. In: Sadeghi, AR. (eds) Financial Cryptography and Data Security. FC 2013. Lecture Notes in Computer Science, vol 7859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39884-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39884-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39883-4

  • Online ISBN: 978-3-642-39884-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics