Abstract
During an adaptive k-out-of-N oblivious transfer (OT), a sender has N private documents, and a receiver wants to adaptively fetch k documents from them such that the sender learns nothing about the receiver’s selection and the receiver learns nothing more than those chosen documents. Many fully simulatable and universally composable adaptive OT schemes have been proposed, but those schemes typically require \(\mathcal{O}(N)\) communication in the initialization phase, which yields \(\mathcal{O}(N)\) overall communication. On the other hand, in some applications, the receiver just needs to fetch a small number of documents, so the initialization cost dominates in the entire protocol, especially for 1-out-of-N OT. We propose the first fully simulatable adaptive OT with sublinear communication under the DDH assumption in the plain model. Our scheme has \(\mathcal{O}(N^{1/2})\) communication in both the initialization phase and each transfer phase. It achieves better (amortized) overall communication complexity compared to existing schemes when \(k=\mathcal{O}(N^{1/2})\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Information Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)
Bayer, S., Groth, J.: Efficient Zero-Knowledge Argument for Correctness of a Shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012)
Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)
Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs Verifiable in Polylogarithmic Time. In: CCC (2005)
Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)
Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
Chaum, D.: Zero-Knowledge Undeniable Signatures (extended abstract). In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)
Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)
Damgård, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)
Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)
Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure Two-party Computation in Sublinear (amortized) Time. In: CCS (2012)
Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)
Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)
Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)
Groth, J.: Linear Algebra with Sub-linear Zero-knowledge Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)
Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. Journal of Cryptology 23, 546–579 (2010)
Groth, J.: hort Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)
Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)
Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)
Kurosawa, K., Nojima, R.: Simple Adaptive Oblivious Transfer Without Random Oracle. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 334–346. Springer, Heidelberg (2009)
Kurosawa, K., Nojima, R., Phong, L.T.: Efficiency-improved fully simulatable adaptive OT under the DDH assumption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 172–181. Springer, Heidelberg (2010)
Kurosawa, K., Nojima, R., Phong, L.T.: Generic Fully Simulatable Adaptive Oblivious Transfer. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 274–291. Springer, Heidelberg (2011)
Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: Single Database, Computationally-Private Information Retrieval. In: FOCS (1997)
Laur, S., Lipmaa, H.: On the Feasibility of Consistent Computations. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 88–106. Springer, Heidelberg (2010)
Lim, C.H.: Efficient Multi-exponentiation and Application to Batch Verification of Digital Signatures (2000), online Tech. Report: http://dasan.sejong.ac.kr/~chlim/pub/multiexp.ps
Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)
Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010)
Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)
Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Protection in Information Processing Systems. IFIP, vol. 147, pp. 440–455. Springer, Boston (2004)
Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)
Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryptology 18, 1–35 (2005), http://dx.doi.org/10.1007/s00145-004-0102-6
Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced Oblivious Transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009)
Yao, A.: Protocols for Secure Computations (Extended Abstract). In: FOCS (1982)
Zhang, B.: Simulatable Adaptive Oblivious Transfer with Statistical Receiver’s Privacy. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 52–67. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, B., Lipmaa, H., Wang, C., Ren, K. (2013). Practical Fully Simulatable Oblivious Transfer with Sublinear Communication. In: Sadeghi, AR. (eds) Financial Cryptography and Data Security. FC 2013. Lecture Notes in Computer Science, vol 7859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39884-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-39884-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39883-4
Online ISBN: 978-3-642-39884-1
eBook Packages: Computer ScienceComputer Science (R0)