Skip to main content

Pixel-based Machine Learning in Computer-Aided Diagnosis of Lung and Colon Cancer

  • Chapter
  • First Online:
Machine Learning in Healthcare Informatics

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 56))

Abstract

Computer-aided diagnosis (CAD) for detection of lesions in medical images has been an active area of research. Machine learning plays an essential role in CAD, because representing lesions and organs requires a complex model that has a number of parameters to determine; thus, medical pattern recognition essentially requires “learning from examples” to determine the parameters of the model. Machine learning has been used to classify lesions into certain classes (e.g., abnormal or normal, lesions or non-lesions, and malignant or benign) in CAD. Recently, as available computational power increased dramatically, pixel/voxel-based machine learning (PML) has emerged in medical image processing/analysis, which uses pixel/voxel values in local regions (or patches) in images instead of features calculated from segmented regions as input information; thus, feature calculation or segmentation is not required. Because PML can avoid errors caused by inaccurate feature calculation and segmentation, the performance of PML can potentially be higher than that of common classifiers. In this chapter, MTANNs (a class of PML) in CAD schemes for detection of lung nodules in CT and for detection of polyps in CTC are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giger ML, Suzuki K (2007) Computer-aided diagnosis (CAD). In: Feng DD (ed) Biomedical information technology. Academic Press, New York, pp 359–374

    Google Scholar 

  2. Doi K (2005) Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 78(1):S3–S19

    Google Scholar 

  3. Li F, Aoyama M, Shiraishi J, Abe H, Li Q et al (2004) Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Am J Roentgenol 183(5):1209–1215

    Article  Google Scholar 

  4. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q et al (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237(2):684–690

    Article  Google Scholar 

  5. Dean JC, Ilvento CC (2006) Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. Am J Roentgenol 187(1):20–28

    Article  Google Scholar 

  6. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K (2005) False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 12(2):191–201

    Google Scholar 

  7. van Ginneken B, ter Haar Romeny BM, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241

    Google Scholar 

  8. Giger ML, Doi K, MacMahon H (1988) Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys 15(2):158–166

    Google Scholar 

  9. Suzuki K, Armato SG, Li F, Sone S, Doi K (2003) Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT. Med Phys 30(7):1602–1617

    Google Scholar 

  10. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J et al (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol 11(6):617–629

    Article  Google Scholar 

  11. Armato SG 3rd, Giger ML, Moran CJ, Blackburn JT, Doi K et al (1999) Computerized detection of pulmonary nodules on CT scans. Radiographics 19(5):1303–1311

    Google Scholar 

  12. Armato SG 3rd, Li F, Giger ML, MacMahon H, Sone S et al (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology 225(3):685–692

    Article  Google Scholar 

  13. Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H et al (1987) Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. Med Phys 14(4):538–548

    Google Scholar 

  14. Gilhuijs KG, Giger ML, Bick U (1998) Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med Phys 25(9):1647–1654

    Article  Google Scholar 

  15. Horsch K, Giger ML, Vyborny CJ, Venta LA (2004) Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol 11(3):272–280

    Article  Google Scholar 

  16. Drukker K, Giger ML, Metz CE (2005) Robustness of computerized lesion detection and classification scheme across different breast US platforms. Radiology 237(3):834–840

    Article  Google Scholar 

  17. Yoshida H, Nappi J (2001) Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans Med Imaging 20(12):1261–1274

    Article  Google Scholar 

  18. Suzuki K, Yoshida H, Nappi J, Dachman AH (2006) Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes. Med Phys 33(10):3814–3824

    Article  Google Scholar 

  19. Suzuki K, Yoshida H, Nappi J, Armato SG 3rd, Dachman AH (2008) Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys 35(2):694–703

    Article  Google Scholar 

  20. Lostumbo A, Wanamaker C, Tsai J, Suzuki K, Dachman AH (2010) Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography. Acad Radiol 17(1):39–47

    Article  Google Scholar 

  21. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, San Diego

    Google Scholar 

  22. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  23. Vapnik N (1995) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  24. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K (2006) Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 33(7):2642–2653

    Google Scholar 

  25. Armato SG 3rd, Giger ML, MacMahon H (2001) Automated detection of lung nodules in CT scans: preliminary results. Med Phys 28(8):1552–1561

    Article  Google Scholar 

  26. Aoyama M, Li Q, Katsuragawa S, MacMahon H, Doi K (2002) Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med Phys 29(5):701–708

    Google Scholar 

  27. Aoyama M, Li Q, Katsuragawa S, Li F, Sone S et al (2003) Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Med Phys 30(3):387–394

    Article  Google Scholar 

  28. Jerebko K, Summers RM, Malley JD, Franaszek M, Johnson CD (2003) Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med Phys 30(1):52–60

    Article  Google Scholar 

  29. Suzuki K, Horiba I, Sugie N (2002) Efficient approximation of neural filters for removing quantum noise from images. IEEE Trans Signal Process 50(7):1787–1799

    Article  Google Scholar 

  30. Suzuki K, Horiba I, Sugie N (2003) Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans Pattern Anal Mach Intell 25(12):1582–1596

    Article  Google Scholar 

  31. Suzuki K, Horiba I, Sugie N, Nanki M (2004) Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging 23(3):330–339

    Article  Google Scholar 

  32. Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24(9):1138–1150

    Google Scholar 

  33. Suzuki K, Abe H, MacMahon H, Doi K (2006) Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging 25(4):406–416

    Google Scholar 

  34. Suzuki K, Rockey DC, Dachman AH (2010) CT colonography: Advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial. Med Phys 30:2–21

    Google Scholar 

  35. Suzuki K, Zhang J, Xu J (2010) Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging 29(11):1907–1917

    Article  Google Scholar 

  36. Xu J, Suzuki K (2011) Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med Phys 38(4):1888–1902

    Google Scholar 

  37. Suzuki K, Horiba I, Sugie N, Nanki M (2002) Neural filter with selection of input features and its application to image quality improvement of medical image sequences. IEICE Trans Inf Syst E85-D(10):1710–1718

    Google Scholar 

  38. Lo SB, Lou SA, Lin JS, Freedman MT, Chien MV et al (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14(4):711–718

    Article  Google Scholar 

  39. Lo SCB, Chan HP, Lin JS, Li H, Freedman MT et al (1995) Artificial convolution neural network for medical image pattern recognition. Neural Netw 8(7–8):1201–1214

    Article  Google Scholar 

  40. Lin JS, Lo SB, Hasegawa A, Freedman MT, Mun SK (1996) Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging 15(2):206–217

    Article  Google Scholar 

  41. Lo SC, Li H, Wang Y, Kinnard L, Freedman MT (2002) A multiple circular path convolution neural network system for detection of mammographic masses. IEEE Trans Med Imaging 21(2):150–158

    Article  Google Scholar 

  42. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15(5):598–610

    Article  Google Scholar 

  43. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  Google Scholar 

  44. Neubauer C (1998) Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw 9(4):685–696

    Article  Google Scholar 

  45. Wei D, Nishikawa RM, Doi K (1996) Application of texture analysis and shift-invariant artificial neural network to microcalcification cluster detection. Radiology 201:696–696

    Google Scholar 

  46. Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA (1996) An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys 23(4):595–601

    Google Scholar 

  47. Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM et al (1994) Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 21(4):517–524

    Google Scholar 

  48. Suzuki K, Armato SG 3rd, Li F, Sone S, Doi K (2003) Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617

    Google Scholar 

  49. Oda S, Awai K, Suzuki K, Yanaga Y, Funama Y et al (2009) Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. Am J Roentgenol 193(5):W397–402

    Google Scholar 

  50. Suzuki K (2009) A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 54(18):S31–45

    Google Scholar 

  51. Xu JW, Suzuki K (2010 ) False-positive reduction in computer-aided detection of polyps in CT colonography: a massive-training support vector regression approach. In: MICCAI workshop on computational challenges and clinical opportunities in virtual colonoscopy and abdominal imaging, Beijing, China pp. 55–60

    Google Scholar 

  52. Mosier CI (1951) Problems and designs of cross-validation. Educ Psychol Meas 11:5–11

    Article  Google Scholar 

  53. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55(1):10–30

    Google Scholar 

  54. Cancer Facts and Figures (2005) American Cancer Society, Atlanta

    Google Scholar 

  55. Flehinger BJ, Kimmel M, Melamed MR (1992) The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest 101(4):1013–1018

    Article  Google Scholar 

  56. Sobue T, Suzuki T, Matsuda M, Kuroishi T, Ikeda S et al (1992) Survival for clinical stage I lung cancer not surgically treated. Comparison between screen-detected and symptom-detected cases. The Japanese Lung Cancer Screening Research Group. Cancer 69(3):685–692

    Article  Google Scholar 

  57. Miettinen S (2000) Screening for lung cancer. Radiol Clin North Am 38(3):479–486

    Article  MathSciNet  Google Scholar 

  58. Heelan RT, Flehinger BJ, Melamed MR, Zaman MB, Perchick WB et al (1984) Non-small-cell lung cancer: results of the New York screening program. Radiology 151(2):289–293

    Google Scholar 

  59. Frost JK, Ball WC Jr, Levin ML, Tockman MS, Baker RR et al (1984) Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis 130(4):549–554

    Google Scholar 

  60. Flehinger BJ, Melamed MR, Zaman MB, Heelan RT, Perchick WB et al (1984) Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study. Am Rev Respir Dis 130(4):555–560

    Google Scholar 

  61. Fontana RS, Sanderson DR, Taylor WF, Woolner LB, Miller WE et al (1984) Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clinic study. Am Rev Respir Dis 130(4):561–565

    Google Scholar 

  62. Kubik A, Polak J (1986) Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer 57(12):2427–2437

    Article  Google Scholar 

  63. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G et al (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354(9173):99–105

    Article  Google Scholar 

  64. Miettinen S, Henschke CI (2001) CT screening for lung cancer: coping with nihilistic recommendations. Radiology 221(3):592–596

    Article  Google Scholar 

  65. Henschke CI, Naidich DP, Yankelevitz DF, McGuinness G, McCauley DI et al (2001) Early lung cancer action project: initial findings on repeat screenings. Cancer 92(1):153–159

    Article  Google Scholar 

  66. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA et al (2003) Lung cancer screening with CT: Mayo Clinic experience. Radiology 226(3):756–761

    Article  Google Scholar 

  67. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T et al (1996) Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology 201(3):798–802

    Google Scholar 

  68. Sone S, Takashima S, Li F, Yang Z, Honda T et al (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351(9111):1242–1245

    Article  Google Scholar 

  69. Sone S, Li F, Yang ZG, Honda T, Maruyama Y et al (2001) Results of three-year mass screening programme for lung cancer using mobile low-dose spiral computed tomography scanner. Br J Cancer 84(1):25–32

    Article  Google Scholar 

  70. Nawa T, Nakagawa T, Kusano S, Kawasaki Y, Sugawara Y et al (1996) Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 122(1):15–20

    Article  Google Scholar 

  71. Gurney JW (1996) Missed lung cancer at CT: imaging findings in nine patients. Radiology 199(1):117–122

    MathSciNet  Google Scholar 

  72. Li F, Sone S, Abe H, MacMahon H, Armato SG 3rd et al (2002) Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology 225(3):673–683

    Article  Google Scholar 

  73. Kobayashi T, Xu XW, MacMahon H, Metz CE, Doi K (1996) Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 199(3):843–848

    Google Scholar 

  74. Otsu N (1979) A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  75. Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183–192

    Article  Google Scholar 

  76. Suzuki K, Horiba I, Sugie N (2001) A simple neural network pruning algorithm with application to filter synthesis. Neural Process Lett 13(1):43–53

    Article  MATH  Google Scholar 

  77. Suzuki K (2004) Determining the receptive field of a neural filter. J Neural Eng 1(4):228–237

    Article  Google Scholar 

  78. Suzuki K, Doi K (2005) How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol 12(10):1333–1341

    Google Scholar 

  79. Egan JP, Greenberg GZ, Schulman AI (1961) Operating characteristics, signal detectability, and the method of free response. J Acoust Soc Am 33:993–1007

    Article  Google Scholar 

  80. Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys 30(8):2040–2051

    Google Scholar 

  81. Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar MH et al (1997) Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 112(2):594–642

    Article  Google Scholar 

  82. Dachman H (2003) Atlas of virtual colonoscopy. Springer, New York

    Book  Google Scholar 

  83. Macari M, Bini EJ (2005) CT colonography: where have we been and where are we going? Radiology 237(3):819–833

    Article  Google Scholar 

  84. Fletcher JG, Booya F, Johnson CD, Ahlquist D (2005) CT colonography: unraveling the twists and turns. Curr Opin Gastroenterol 21(1):90–98

    Google Scholar 

  85. Yoshida H, Dachman AH (2005) CAD techniques, challenges, and controversies in computed tomographic colonography. Abdom Imaging 30(1):26–41

    Article  Google Scholar 

  86. Johnson CD, Dachman AH (2000) CT colonography: the next colon screening examination? Radiology 216(2):331–341

    Article  Google Scholar 

  87. Nappi J, Yoshida H (2003) Feature-guided analysis for reduction of false positives in CAD of polyps for computed tomographic colonography. Med Phys 30(7):1592–1601

    Article  Google Scholar 

  88. Frimmel H, Nappi J, Yoshida H (2004) Fast and robust computation of colon centerline in CT colonography. Med Phys 31(11):3046–3056

    Article  Google Scholar 

  89. Yoshida H, Masutani Y, MacEneaney P, Rubin DT, Dachman AH (2002) Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: pilot study. Radiology 222(2):327–336

    Article  Google Scholar 

  90. Kupinski MA, Edwards DC, Giger ML, Metz CE (2001) Ideal observer approximation using Bayesian classification neural networks. IEEE Trans Med Imaging 20(9):886–899

    Article  Google Scholar 

  91. Nappi J, Yoshida H (2002) Automated detection of polyps with CT colonography: evaluation of volumetric features for reduction of false-positive findings. Acad Radiol 9(4):386–397

    Article  Google Scholar 

  92. Suzuki K, Armato SG, Li F, Sone S, Doi K (2003) Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT. In: Proceedings of SPIE Medical Imaging (SPIE MI), San Diego, CA, pp 1355–1366

    Google Scholar 

  93. Rockey DC, Paulson E, Niedzwiecki D, Davis W, Bosworth HB et al (2005) Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet 365(9456):305–311

    Google Scholar 

  94. Doshi T, Rusinak D, Halvorsen RA, Rockey DC, Suzuki K et al (2007) CT colonography: false-negative interpretations. Radiology 244(1):165–173

    Article  Google Scholar 

  95. Edwards DC, Kupinski MA, Metz CE, Nishikawa RM (2002) Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Med Phys 29(12):2861–2870

    Article  Google Scholar 

  96. Rembacken BJ, Fujii T, Cairns A, Dixon MF, Yoshida S et al (2000) Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet 355(9211):1211–1214

    Article  Google Scholar 

  97. Soetikno RM, Kaltenbach T, Rouse RV, Park W, Maheshwari A et al (2008) Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA 299(9):1027–1035

    Article  Google Scholar 

  98. Soetikno R, Friedland S, Kaltenbach T, Chayama K, Tanaka S (2006) Nonpolypoid (flat and depressed) colorectal neoplasms. Gastroenterology 130(2):566–576; quiz 588–589

    Google Scholar 

  99. Kudo S, Kashida H, Tamura T (2000) Early colorectal cancer: flat or depressed type. J Gastroenterol Hepatol 15(Suppl):D66–70

    Google Scholar 

  100. Kudo S, Kashida H, Tamura T, Kogure E, Imai Y et al (2000) Colonoscopic diagnosis and management of nonpolypoid early colorectal cancer. World J Surg 24(9):1081–1090

    Article  Google Scholar 

  101. Ross S, Waxman I (2006) Flat and depressed neoplasms of the colon in Western populations. Am J Gastroenterol 101(1):172–180

    Article  Google Scholar 

  102. Fujii T, Rembacken BJ, Dixon MF, Yoshida S, Axon AT (1998) Flat adenomas in the United Kingdom: are treatable cancers being missed? Endoscopy 30(5):437–443

    Article  Google Scholar 

  103. Johnson CD, Chen MH, Toledano AY, Heiken JP, Dachman A et al (2008) Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med 359(12):1207–1217

    Article  Google Scholar 

  104. Fidler JL, Johnson CD, MacCarty RL, Welch TJ, Hara AK et al (2002) Detection of flat lesions in the colon with CT colonography. Abdom Imaging 27(3):292–300

    Article  Google Scholar 

  105. Fidler J, Johnson C (2008) Flat polyps of the colon: accuracy of detection by CT colonography and histologic significance. Abdom Imaging

    Google Scholar 

  106. Taylor SA, Suzuki N, Beddoe G, Halligan S (2008) Flat neoplasia of the colon: CT colonography with CAD. Abdom Imaging 34(2):173–181

    Google Scholar 

  107. Lostumbo A, Suzuki K, Dachman AH (2009) Flat lesions in CT colonography. Abdom Imaging 34(2):173–181

    Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the help of countless individuals. The author acknowledges the invaluable assistance of all colleagues and support staff. The author is grateful to all members in the Suzuki Laboratory in the Department of Radiology at the University of Chicago, especially Ivan Sheu, Mark L Epstein, Jianwu Xu, and Sheng Chen, for their contributions to the studies, to colleagues and collaborators, especially Abraham H Dachman, Heber MacMahon, Kunio Doi, Samuel G Armato III, Feng Li, Shusuke Sone, Hiroyuki Abe, Qiang Li, Junji Shiraishi, Don C Rockey, Hiroyuki Yoshida, and Janne Nappi for their valuable suggestions, and to Ms. E. F. Lanzl for improving the chapter. The author is also grateful to his wife, Harumi Suzuki, for her assistance with the chapter and studies, and his daughters, Mineru Suzuki and Juno Suzuki, for cheering him up. This work was partly supported by Grant Number R01CA120549 from the National Cancer Institute/National Institutes of Health and by NIH S10 RR021039 and P30 CA14599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, K. (2014). Pixel-based Machine Learning in Computer-Aided Diagnosis of Lung and Colon Cancer. In: Dua, S., Acharya, U., Dua, P. (eds) Machine Learning in Healthcare Informatics. Intelligent Systems Reference Library, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40017-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40017-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40016-2

  • Online ISBN: 978-3-642-40017-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics