Abstract
Information geometry emerged from the study of the geometrical structure of a manifold of probability distributions under the criterion of invariance. It defines a Riemannian metric uniquely, which is the Fisher information metric. Moreover, a family of dually coupled affine connections are introduced. Mathematically, this is a study of a triple (M, g, T), where M is a manifold, g is a Riemannian metric, and T is a third-order symmetric tensor. Information geometry has been applied not only to statistical inferences but also to various fields of information sciences where probability plays an important role. Many important families of probability distributions are dually flat Riemannian manifolds. A dually flat manifold possesses a beautiful structure: It has two mutually coupled flat affine connections and two convex functions connected by the Legendre transformation. It has a canonical divergence, from which all the geometrical structure is derived. The KL-divergence in probability distributions is automatically derived from the invariant flat nature. Moreover, the generalized Pythagorean and geodesic projection theorems hold. Conversely, we can define a dually flat Riemannian structure from a convex function. This is derived through the Legendre transformation and Bregman divergence connected with a convex function. Therefore, information geometry is applicable to convex analysis, even when it is not connected with probability distributions. This widens the applicability of information geometry to convex analysis, machine learning, computer vision, Tsallis entropy, economics, and game theory. The present talk summarizes theoretical constituents of information geometry and surveys a wide range of its applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari, Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, Oxford University Press (2000)
Amari, S.: Information geometry and its applications: Convex function and dually flat manifold. In: Nielsen, F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 75–102. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amari, Si. (2013). Information Geometry and Its Applications: Survey. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)