Abstract
Natural texture images can exhibit high intra-class diversity due to the acquisition conditions. To reduce its impact on classification performances, the geometry of the cluster in the feature space should be considered. We introduce the Spherically Invariant Random Vector (SIRV) representation, which is based on scale-space decomposition, for the modeling of spatial dependencies characterizing the texture image. From the specific properties of the SIRV process, i.e. the independence between the two sub-processes of the compound model, we derive a centroid estimation scheme from a pseudo-distance i.e. the Jeffrey divergence. Next, a K-centroids based (K-CB) supervised classification algorithm is introduced to handle the intra-class variability of texture images in the feature space. A comparative study on various conventional texture databases is conducted and reveals the impact of the proposed classification algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choy, S.K., Tong, C.S.: Supervised texture classification using characteristic generalized Gaussian density. Journal of Mathematical Imaging and Vision 29, 35–47 (2007)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)
Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012)
Schwander, O., Schutz, A., Nielsen, F., Berthoumieu, Y.: k-MLE for mixtures of generalized gaussians. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2825–2828. IEEE (2012)
Verdoolaege, G., Rosseel, Y., Lambrechts, M., Scheunders, P.: Wavelet-based colour texture retrieval using the Kullback-Leibler divergence between bivariate generalized Gaussian models. In: IEEE International Conference on Image Processing, pp. 265–268 (November 2009)
Bombrun, L., Lasmar, N.E., Berthoumieu, Y., Verdoolaege, G.: Multivariate texture retrieval using the SIRV representation and the geodesic distance. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 865–868 (2011)
Barbaresco, F.: Applications of information geometry to radar signal processing. In: Emerging Trends in Visual Computing (ETVC 2008), November 18-20 (2008)
Amari, S., Nagaoka, H.: Methods of information geometry. Amer. Mathematical Society (2007)
Nielsen, F., Nock, R.: Sided and symmetrized bregman centroids. IEEE Transactions on Information Theory 55(6), 2048–2059 (2009)
Schutz, A., Berthoumieu, Y., Turcu, F., Nafornita, C., Isar, A.: Barycentric distribution estimation for texture clustering based on information-geometry tools. In: International Symposium on Electronics and Telecommunications (November 2012)
Lasmar, N.E., Berthoumieu, Y.: Multivariate statistical modeling for texture analysis using wavelet transforms. In: IEEE International Conference on Acoustics Speech and Signal Processing, pp. 790–793 (March 2010)
Gini, F., Greco, M.: Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Processing 82(12), 1847–1859 (2002)
Schutz, A., Bombrun, L., Berthoumieu, Y.: Centroid-based texture classification using the sirv representation. In: International Conference on Image Processing, ICIP (September 2013)
Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerishe Mathematik 1, 269–271 (1959)
Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., Campbell, L., Negroponte, N.: Vision texture database. The Media Laboratory. MIT, Cambridge (1995)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)
Gomez, D., Montero, J.: Determining the accuracy in image supervised classification problems. EUSFLAT 1(1), 342–349 (2011)
Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transactions on Neural Networks 14(2), 390–398 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schutz, A., Bombrun, L., Berthoumieu, Y. (2013). K-Centroids-Based Supervised Classification of Texture Images Using the SIRV Modeling. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)