Skip to main content

K-Centroids-Based Supervised Classification of Texture Images Using the SIRV Modeling

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

  • 5009 Accesses

Abstract

Natural texture images can exhibit high intra-class diversity due to the acquisition conditions. To reduce its impact on classification performances, the geometry of the cluster in the feature space should be considered. We introduce the Spherically Invariant Random Vector (SIRV) representation, which is based on scale-space decomposition, for the modeling of spatial dependencies characterizing the texture image. From the specific properties of the SIRV process, i.e. the independence between the two sub-processes of the compound model, we derive a centroid estimation scheme from a pseudo-distance i.e. the Jeffrey divergence. Next, a K-centroids based (K-CB) supervised classification algorithm is introduced to handle the intra-class variability of texture images in the feature space. A comparative study on various conventional texture databases is conducted and reveals the impact of the proposed classification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choy, S.K., Tong, C.S.: Supervised texture classification using characteristic generalized Gaussian density. Journal of Mathematical Imaging and Vision 29, 35–47 (2007)

    Article  MathSciNet  Google Scholar 

  2. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)

    Google Scholar 

  3. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Schwander, O., Schutz, A., Nielsen, F., Berthoumieu, Y.: k-MLE for mixtures of generalized gaussians. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2825–2828. IEEE (2012)

    Google Scholar 

  5. Verdoolaege, G., Rosseel, Y., Lambrechts, M., Scheunders, P.: Wavelet-based colour texture retrieval using the Kullback-Leibler divergence between bivariate generalized Gaussian models. In: IEEE International Conference on Image Processing, pp. 265–268 (November 2009)

    Google Scholar 

  6. Bombrun, L., Lasmar, N.E., Berthoumieu, Y., Verdoolaege, G.: Multivariate texture retrieval using the SIRV representation and the geodesic distance. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 865–868 (2011)

    Google Scholar 

  7. Barbaresco, F.: Applications of information geometry to radar signal processing. In: Emerging Trends in Visual Computing (ETVC 2008), November 18-20 (2008)

    Google Scholar 

  8. Amari, S., Nagaoka, H.: Methods of information geometry. Amer. Mathematical Society (2007)

    Google Scholar 

  9. Nielsen, F., Nock, R.: Sided and symmetrized bregman centroids. IEEE Transactions on Information Theory 55(6), 2048–2059 (2009)

    Article  MathSciNet  Google Scholar 

  10. Schutz, A., Berthoumieu, Y., Turcu, F., Nafornita, C., Isar, A.: Barycentric distribution estimation for texture clustering based on information-geometry tools. In: International Symposium on Electronics and Telecommunications (November 2012)

    Google Scholar 

  11. Lasmar, N.E., Berthoumieu, Y.: Multivariate statistical modeling for texture analysis using wavelet transforms. In: IEEE International Conference on Acoustics Speech and Signal Processing, pp. 790–793 (March 2010)

    Google Scholar 

  12. Gini, F., Greco, M.: Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Processing 82(12), 1847–1859 (2002)

    Article  Google Scholar 

  13. Schutz, A., Bombrun, L., Berthoumieu, Y.: Centroid-based texture classification using the sirv representation. In: International Conference on Image Processing, ICIP (September 2013)

    Google Scholar 

  14. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  15. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerishe Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., Campbell, L., Negroponte, N.: Vision texture database. The Media Laboratory. MIT, Cambridge (1995)

    Google Scholar 

  17. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  18. Gomez, D., Montero, J.: Determining the accuracy in image supervised classification problems. EUSFLAT 1(1), 342–349 (2011)

    Google Scholar 

  19. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transactions on Neural Networks 14(2), 390–398 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schutz, A., Bombrun, L., Berthoumieu, Y. (2013). K-Centroids-Based Supervised Classification of Texture Images Using the SIRV Modeling. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics