Skip to main content

A Geometric Framework for Non-Unitary Joint Diagonalization of Complex Symmetric Matrices

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

Non-unitary joint diagonalization of complex symmetric matrices is an important technique in signal processing. The so-called complex oblique projective (COP) manifold has been shown to be an appropriate manifold setting for analyzing the problem and developing geometric algorithms for minimizing the off-norm cost function. However, the recent identification of the COP manifold as a collection of rank-one orthogonal projector matrices is not a suitable framework for the reconstruction error function due to its large memory requirement compared to the actual dimension of the search space. In this work, we investigate the geometry of the COP manifold as a quotient manifold, which allows less memory requirement, and develop a conjugate gradient algorithm to minimize the reconstruction error function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press Inc. (2010)

    Google Scholar 

  2. Huang, X., Wu, H.C., Principe, J.C.: Robust blind beamforming algorithm using joint multiple matrix diagonalization. IEEE Sensors Journal 7(1), 130–136 (2007)

    Article  Google Scholar 

  3. Zeng, W.J., Li, X.L., Zhang, X.D.: Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices. IEEE Signal Processing Letters 16(3), 164–167 (2009)

    Article  Google Scholar 

  4. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. The IEE Proceedings of F 140(6), 363–370 (1993)

    Google Scholar 

  5. Cardoso, J.F.: On the performance of orthogonal source separation algorithms. In: Proceedings of the 9th European Signal Processing Conference, 776–779 (1994)

    Google Scholar 

  6. Pham, D.T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM Journal on Matrix Analysis and Applications 22(4), 1136–1152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ziehe, A., Laskov, P., Nolte, G., Müller, K.R.: A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning Research 5, 777–800 (2004)

    MATH  Google Scholar 

  8. Souloumiac, A.: Nonorthogonal joint diagonalization by combining Givens and hyperbolic rotations. IEEE Transactions on Signal Processing 57(6), 2222–2231 (2009)

    Article  MathSciNet  Google Scholar 

  9. Li, X.L., Adalı, T.: Blind separation of noncircular correlated sources using Gaussian entropy rate. IEEE Transactions on Signal Processing 59(6), 2969–2975 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kleinsteuber, M., Shen, H.: Uniqueness analysis of non-unitary matrix joint diagonalization. IEEE Transactions on Signal Processing (2013)

    Google Scholar 

  11. Joho, M., Rahbar, K.: Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation. In: Proceedings of the 2nd IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2002), Rosslyn, VA USA, pp. 403–407 (2002)

    Google Scholar 

  12. van der Veen, A.J.: Joint diagonalization via subspace fitting techniques. In: Proceedings of the 26th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2773–2776 (2001)

    Google Scholar 

  13. Afsari, B.: Simple LU and QR based non-orthogonal matrix joint diagonalization. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 1–7. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Shen, H., Kleinsteuber, M.: Complex blind source separation via simultaneous strong uncorrelating transform. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 287–294. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Belouchrani, A., Meraim, K.A., Cardoso, J.F., Moulines, E.: A blind source separation technique based on second order statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)

    Article  Google Scholar 

  16. Absil, P.A., Gallivan, K.A.: Joint diagonalization on the oblique manifold for independent component analysis. In: Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, V945–V948 (2006)

    Google Scholar 

  17. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  18. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: Theory. Journal of Optimization Theory and Applications 69(1), 129–137 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleinsteuber, M., Hüper, K.: An intrinsic CG algorithm for computing dominant subspaces. In: Proceedings of the 32nd IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pp. IV1405–IV1408 (2007)

    Google Scholar 

  20. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing 50(7), 1545–1553 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleinsteuber, M., Shen, H. (2013). A Geometric Framework for Non-Unitary Joint Diagonalization of Complex Symmetric Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics