Skip to main content

Deconvolution for the Wasserstein Metric and Geometric Inference

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

This paper is a short presentation of recent results about Wasserstein deconvolution for topological inference published in [1]. A distance function to measures has been defined in [2] to answer geometric inference problems in a probabilistic setting. According to their result, the topological properties of a shape can be recovered by using the distance to a known measure ν, if ν is close enough to a measure μ for he Wasserstein distance W 2. Given a point cloud, a natural candidate for ν is the empirical measure μ n . Nevertheless, in many situations the data points are not located on the geometric shape but in the neighborhood of it, and μ n can be too far from μ. In a deconvolution framework, we consider a slight modification of the classical kernel deconvolution estimator, and we give a consistency result and rates of convergence for this estimator. Some simulated experiments illustrate the deconvolution method and its application to geometric inference on various shapes and with various noise distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caillerie, C., Chazal, F., Dedecker, J., Michel, B.: Deconvolution for the Wasserstein metric and geometric inference. Electron. J. Stat. 5, 1394–1423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for probability measures. Foundations of Computational Mathematics (to appear)

    Google Scholar 

  3. Hastie, T., Stuetzle, W.: Principal curves. Amer. Statist. Assoc. 84(406), 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L.: On the path density of a gradient field. Ann. Statist. 37(6A), 3236–3271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L.: The geometry of nonparametric filament estimation. arXiv:1003.5536v2 (2010)

    Google Scholar 

  6. Cuevas, A., Fraiman, R.: Set estimation. In: New Perspectives in Stochastic Geometry, pp. 374–397. Oxford Univ. Press, Oxford (2010)

    Google Scholar 

  7. Chazal, F., Lieutier, A.: Smooth manifold reconstruction from noisy and non uniform approximation with guarantees. Comp. Geom: Theory and Applications 40, 156–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in euclidean spaces. Discrete Comput. Geom. 41, 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rachev, S.T., Rüschendorf, L.: Mass transportation problems. Probability and its Applications, vol. II. Springer (1998)

    Google Scholar 

  10. Villani, C.: Optimal Transport: Old and New. Grundlehren Der Mathematischen Wissenschaften. Springer (2008)

    Google Scholar 

  11. Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. In: Surveys in Differential Geometry, vol. XI, pp. 137–201. Int. Press, Somerville (2007)

    Google Scholar 

  12. Horowitz, J., Karandikar, R.L.: Mean rates of convergence of empirical measures in the Wasserstein metric. Comput. Appl. Math. 55(3), 261–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hall, P., Simar, L.: Estimating a changepoint, boundary, or frontier in the presence of observation error. Amer. Statist. Assoc. 97(458), 523–534 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delaigle, A., Gijbels, I.: Estimation of boundary and discontinuity points in deconvolution problems. Statist. Sinica 16(3), 773–788 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Meister, A.: Support estimation via moment estimation in presence of noise. Statistics 40(3), 259–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meister, A.: Estimating the support of multivariate densities under measurement error. Multivariate Anal. 97(8), 1702–1717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koltchinskii, V.I.: Empirical geometry of multivariate data: a deconvolution approach. Ann. Statist. 28(2), 591–629 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carroll, R.J., Hall, P.: Optimal rates of convergence for deconvolving a density. Amer. Statist. Assoc. 83(404), 1184–1186 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stefanski, L., Carroll, R.J.: Deconvoluting kernel density estimators. Statistics 21(2), 169–184 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dedecker, J., Michel, B.: Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension (2013)

    Google Scholar 

  21. Comte, F., Lacour, C.: Data driven density estimation in presence of unknown convolution operator. Royal Stat. Soc. Ser B 73, 601–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caillerie, C., Chazal, F., Dedecker, J., Michel, B. (2013). Deconvolution for the Wasserstein Metric and Geometric Inference. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics