Skip to main content

Geometric Quantization of Complex Monge-Ampère Operator for Certain Diffusion Flows

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

  • 4739 Accesses

Abstract

In the 40’s, C.R. Rao considered probability distributions for a statistical model as the points of a Riemannian smooth manifold, where the considered Riemannian metric is the so-called Fisher metric. When extended to the complex projective space, this metric is actually the Fubini-Study metric. For certain models, it is quite remarkable that one actually needs to consider data with complex values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbaresco, F.: Innovative tools for radar signal processing based on Cartans geometry of SPD matrices and Information Geometry. In: IEEE International Radar Conference (2008)

    Google Scholar 

  2. Barbaresco, F.: Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery. In: Nielsen, F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 124–163. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Shima, H.: The geometry of Hessian structures. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)

    Book  MATH  Google Scholar 

  4. Ali, S.T., Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4), 391–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezin, F.A.: Quantization in complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 363–402, 472 (1975)

    Google Scholar 

  6. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32(1), 99–130 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Phong, D.H., Sturm, J.: The Monge-Ampère operator and geodesics in the space of Kähler potentials. Invent. Math. 166(1), 125–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Phong, D.H., Sturm, J.: Monge-Ampère equations, geodesics and geometric invariant theory. In: Journées, E.D.P. (ed.) École Polytech., Palaiseau, No X, p. 15 (2005)

    Google Scholar 

  9. Fine, J.: Calabi flow and projective embeddings. J. Differential Geom. 84(3), 489–523 (2010); With an appendix by Kefeng Liu and Xiaonan Ma

    Google Scholar 

  10. Cao, H.D., Keller, J.: Balancing kähler flow for the calabi problem. To appear in Journal of European Math. Soc. ArXiv:1102.1097 (2011)

    Google Scholar 

  11. Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels. Progress in Mathematics, vol. 254. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  13. Bourguignon, J.P., Li, P., Yau, S.T.: Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math. Helv. 69(2), 199–207 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, J.: Ricci iterations on Kähler classes. J. Inst. Math. Jussieu 8(4), 743–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourguignon, J.P.: Ricci curvature and measures. Jpn. J. Math. 4(1), 27–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yau, S.T.: Nonlinear analysis in geometry. Enseign. Math (2) 33(1-2), 109–158 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978). Lecture Notes in Math., vol. 732, pp. 233–243. Springer, Berlin (1979)

    Google Scholar 

  19. Mundet i Riera, I.: A Hitchin-Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds. I. Osaka J. Math. 24(2), 227–252 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Berman, R., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on log-Fano varieties. ArXiv 1111.7158 (2011)

    Google Scholar 

  22. Berman, R.: Relative Kähler-ricci flows and their quantization. Arxiv 1002.3717 (2010)

    Google Scholar 

  23. Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampère equations. ArXiv 0907.4490 (2009)

    Google Scholar 

  24. Barbaresco, F.: Information intrinsic geometric flows. In: MAX-ENT 2006 Conf. Paris, vol. 872, pp. 211–218 (2006)

    Google Scholar 

  25. Barbaresco, F.: Etude et extension des flots de Ricci, Kähler-Ricci et Calabi dans le cadre du traitement de l’image et de la géométrie de l’information. Gretsi, Groupe d’Etudes du Traitement du Signal et des Images (2005)

    Google Scholar 

  26. Loi, A., Mossa, R.: Berezin quantization of homogeneous bounded domains. Geom. Dedicata 161, 119–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, J. (2013). Geometric Quantization of Complex Monge-Ampère Operator for Certain Diffusion Flows. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics