Skip to main content

Using Multiple Data Stores in the Cloud: Challenges and Solutions

  • Conference paper
Data Management in Cloud, Grid and P2P Systems (Globe 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8059))

  • 779 Accesses

Abstract

Cloud computing has recently emerged as a new computing paradigm. This latter provides provisioning of dynamically scalable and often virtualized resources which are offered as services. In this context, there is a services pool that supports platforms and mechanisms in order to guarantee the applications development and execution. This set of services is called platform as a service (PaaS). One of the main goals of the PaaS is to support large data stores by ensuring elasticity, scalability and portability. Many applications have to manage different types of data that a single store can not efficiently support. Consequently, clouds need to deploy multiple data stores, allowing applications to choose those corresponding to their data requirements. In this paper, we present and discuss the requirements of such environments and analyze current state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Geelan, J., et al.: Twenty-one experts define cloud computing

    Google Scholar 

  2. Team, M.: Microsoft azure (2013)

    Google Scholar 

  3. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet application development platform. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 889–896 (2009)

    Google Scholar 

  4. Google: Google appengine documentation (2009)

    Google Scholar 

  5. Fay, C., et al.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2) (2008)

    Google Scholar 

  6. Cooper, B.F., et al.: Pnuts: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)

    Google Scholar 

  7. DeCandia, G.: et al.: Dynamo: amazon’s highly available key-value store. In: Proceedings of the 21st ACM Symposium on Operating Systems Principles, SOSP 2007, October 14-17, pp. 205–220. Stevenson, Washington (2007)

    Google Scholar 

  8. Agrawal, D., El Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elasticity, and autonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Mark, C., et al.: Cloud application management for platforms (August 2012)

    Google Scholar 

  10. SNIA: Cloud data management interface (June 2012)

    Google Scholar 

  11. Truong, H.L., et al.: Exchanging data agreements in the daas model. In: 2011 IEEE Asia-Pacific Services Computing Conference, APSCC 2011, Jeju, Korea (South), December 12-15, pp. 153–160 (2011)

    Google Scholar 

  12. Vu, Q.H.: et al.: Demods: A description model for data-as-a-service. In: IEEE 26th International Conference on Advanced Information Networking and Applications, AINA, Fukuoka, Japan, March 26-29, pp. 605–612 (2012)

    Google Scholar 

  13. Truong, H.L., Comerio, M., Paoli, F.D., Gangadharan, G.R., Dustdar, S.: Data contracts for cloud-based data marketplaces. IJCSE 7(4), 280–295 (2012)

    Article  Google Scholar 

  14. Ruiz-Alvarez, A., Humphrey, M.: An automated approach to cloud storage service selection. In: Proceedings of the 2nd International Workshop on Scientific Cloud Computing, ScienceCloud 2011, pp. 39–48. ACM, New York (2011)

    Google Scholar 

  15. Martin, F.: Polyglot persistence (November 2011)

    Google Scholar 

  16. Pollack, M., et al.: Spring Data, vol. 1. O’Reilly Media (October 2012)

    Google Scholar 

  17. Poole, J.D.: Model-driven architecture: Vision, standards and emerging technologies. In: ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models (2001)

    Google Scholar 

  18. Peidro, J.E., Muñoz-Escoí, F.D.: Towards the next generation of model driven cloud platforms. In: CLOSER 2011 - Proceedings of the 1st International Conference on Cloud Computing and Services Science, Noordwijkerhout, Netherlands, May 7-9, pp. 494–500 (2011)

    Google Scholar 

  19. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, January 6-9, Online Proceedings, Asilomar, CA (2013)

    Google Scholar 

  20. Google: Protocol buffers (2012)

    Google Scholar 

  21. Kossmann, D., et al.: Cloudy: A modular cloud storage system. PVLDB 3(2), 1533–1536 (2010)

    MathSciNet  Google Scholar 

  22. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration, 1st edn. Morgan Kaufmann (2012)

    Google Scholar 

  23. Curé, O., Hecht, R., Le Duc, C., Lamolle, M.: Data integration over NoSQL stores using access path based mappings. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 481–495. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Curino, C.: et al.: Relational cloud: a database service for the cloud. In: CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, January 9-12, Online Proceedings, pp. 235–240. Asilomar, CA (2011)

    Google Scholar 

  25. Das, S., Agrawal, D., El Abbadi, A.: Elastras: An elastic, scalable, and self-managing transactional database for the cloud. ACM Trans. Database Syst. 38(1), 5 (2013)

    Article  Google Scholar 

  26. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared nothing databases for elastic cloud platforms. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, June 12-16, pp. 301–312. Athens, Greece (2011)

    Google Scholar 

  27. Oszu, T.M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer (2011)

    Google Scholar 

  28. Bermbach, D.: et al.: A middleware guaranteeing client-centric consistency on top of eventually consistent datastores. In: First IEEE International Conference on Cloud Engineering, IEEE IC2E 2013, San Francisco, CA, USA, March 25-28 (2013)

    Google Scholar 

  29. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in the cloud: Pay only when it matters. PVLDB 2(1), 253–264 (2009)

    Google Scholar 

  30. Livenson, I., Laure, E.: Towards transparent integration of heterogeneous cloud storage platforms. In: Proceedings of the Fourth International Workshop on Data-Intensive Distributed Computing, DIDC 2011, pp. 27–34 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sellami, R., Defude, B. (2013). Using Multiple Data Stores in the Cloud: Challenges and Solutions. In: Hameurlain, A., Rahayu, W., Taniar, D. (eds) Data Management in Cloud, Grid and P2P Systems. Globe 2013. Lecture Notes in Computer Science, vol 8059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40053-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40053-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40052-0

  • Online ISBN: 978-3-642-40053-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics