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Abstract. We consider the problem of merging individual text docu-
ments, motivated by the single-file merge algorithms of document-based
version control systems. Abstracting away the merging of conflicting ed-
its to an external conflict resolution function (possibly implemented by a
human), we consider the efficient identification of conflicting regions. We
show how to implement tree-based document representation to quickly
answer a data structure inspired by the “blame” query of some version
control systems. A “blame” query associates every line of a document
with the revision in which it was last edited. Our tree uses this idea to
quickly identify conflicting edits. We show how to perform a merge op-
eration in time proportional to the sum of the logarithms of the shared
regions of the documents, plus the cost of conflict resolution. Our data
structure is functional and therefore confluently persistent, allowing ar-
bitrary version DAGs as in real version-control systems. Our results rely
on concurrent traversal of two trees with short circuiting when shared
subtrees are encountered.

1 Introduction

The document-level merge operation is a fundamental primitive in version con-
trol systems. However, most current implementations of this operation take lin-
ear time in the size of the document, and rely on the ability to identify the least
common ancestor of the two revisions to be merged. For large documents, we
can improve on this näıve bound by not spending time on non-conflicting por-
tions of the document. More abstractly, the lowest common ancestor may not
be unique, or even exist, in a fully confluent setting. In this paper, we describe
the practical motivation for this problem, our model of the theoretical problem,
and our solution.

Document merge. Single-document merging forms the core of many modern ver-
sion control systems, as it is critical for reconciling multiple, concurrent branches
of development.

Single-document merging has been implemented in a variety of different ways
by different version control systems. The most basic merge strategy is the three-
way merge, as implemented by Git, Mercurial, and many other version con-
trol systems. In a three-way merge, three revisions of the file are specified: the



“source” version, the “target” version, and the “base” version, which is the least
common ancestor of the source and target. Any intermediate history is thrown
out, and the result of the merge relies on the diffs between the base and source
and between the base and target. These diffs are split into changed and un-
changed segments, which are then used to build the new document.

There are a few elaborations on the basic three-way merge. In the case of
multiple least common ancestors, Git will recursively merge the common ances-
tors together, and use those as the base version.3 Additionally, there is some
question of whether two chunks that have applied an identical change (as op-
posed to conflicting ones) should silently merge together: most systems opt for
not reporting a conflict. This behavior has lead to some highly publicized edge
cases in the merge algorithm [3].

A more sophisticated merging algorithm is implemented by Darcs. It uses
whether two patches commute as the test for whether a merge conflict should
be generated; and it performs the merge patch by patch. Because Darcs uses the
intermediate history, this often results in a higher quality merge, but requires
time at least linear in the number of patches, and can result in exponential
behavior in some cases.

An interesting but largely obsolete representation for an entire history which
was implemented by the SCCS and BitKeeper systems is the “Weave” [9], where
every document in the repository contains all lines of text present in any revision
of the document, with metadata indicating what revisions they correspond to.
Merging on this representation takes time proportional to the size of the entire
history.

Prior work. Demaine, Langerman, and Price [4] considered the problem of ef-
ficient merge at the directory/file level, using confluently persistent data struc-
tures. They cite the document-level merge problem as “relatively easy to handle”,
assuming that the merge may take linear time. The goal of this work is to beat
this bound.

In the algorithms community, merging usually refers to the combination of
two sorted arrays into one sorted array. This problem can be viewed as similar,
particularly if we imagine that equal-key items get combined by some auxiliary
function. The standard solution to this problem (as in, e.g., mergesort) takes
linear time in the input arrays. Adaptive merging algorithms [2,5,10,11] achieve

the optimal bound of Θ(
∑k

i=1 lg gi) if the solution consists of g1 items from the
first set, then g2 items from the second set, then g3 items from the first set, etc.
Our result is essentially a confluent data structure built around a dynamic form
of this one-shot algorithm.

In this paper, we will refer repeatedly to the well-known results of the func-
tional programming community [12], in particular confluence via purely func-
tional data structures with path copying as the primary technique. The idea of

3 This situation is rare enough in practice that very few other VCSes implement this
behavior, although this strategy is reported to reduce conflicts in merges on the
Linux kernel.



parametrizing an algorithm on a human-driven component is a basic technique
of human-based computation; however, we do not refer to any of the results in
that literature.

Theoretical model. A natural model of a text document in a version control
system is a confluently persistent sequence of characters. Persistent data struc-
tures [7, 8] preserve old versions of a document as modifications are made to
a document. While a fully persistent data structure permits both queries and
modifications to old versions of document, a confluently persistent structure ad-
ditionally supports a merge operation. Any two documents can be merged, which
means that the version dependencies can form a directed acyclic graph (DAG).
Our paper presents an implementation of this data structure which admits an
efficient implementation of this merge operation.

For the purposes of our treatment, we consider a more expressive model of
text documents as confluently persistent sorted associative maps (dictionaries),
whose values are arrays of characters, and whose keys are an ordered data type
supporting constant-time comparison and a split operation with the property
a < split(a, b) < b. (Data structures for maintaining order in this way are well
known [1,6], and also common in maintaining full persistence [7].) The user can
decide to divide the document into one entry (key/value pair) per character, or
one entry per line, or some other level of granularity. The supported operations
are then insertion, deletion, and modification of entries in the map, which cor-
respond to equivalent operations on characters, lines, etc., of the document.4

These operations take one (unchanged) version as input and produce a new ver-
sion (with the requested change) as output. In addition, the merge operation
takes two maps (versions) and a conflict-resolution function, which takes two
conflicting submaps ranging between keys i and j and combines them into a
single submap ranging between keys i and j. We assume that conflict resolution
requires at least Θ(|M |+ |N |) time, where |M | and |N | are the number of entries
in the input submaps; in practice, the cost of conflict resolution might be more
like Θ(k(|M |+ |N |)), where k is the average length of the sequences of characters
inside the submaps.

Entries of these maps have one extra piece of metadata: a unique ID iden-
tifying the revision that this entry was last updated. We also assume that we
have a source of unique IDs (occupying O(1) space each), which can be used to
allocate new revision numbers for marking nodes. In practice, cryptographically
secure hash functions are used to generate these IDs.

Sharing. The performance of our document merge operation depends on the
underlying structure of our documents; if common and conflicting regions are
interleaved Θ(n) times, then we cannot hope to do any better than a linear-time
merge. Thus, we define the disjoint shared regions S of our sorted maps to be
the set of maximal disjoint ranges which have the same contents (matching keys,

4 It is worth emphasizing that the keys do not correspond to character-indexes or
line-numbers; aside from order, they are completely arbitrary.



values, and revision ID): these can be thought as the non-conflicting regions of
two documents. Note that, if two independent editors make the same revision to
a document, the resulting two entries are considered in conflict, as the revision
IDs will differ.

It will also be useful to refer to the non-shared entries N of two documents,
which is defined to be the set of all entries in either document that are contained
in no S ∈ S.

Let f(|N |) denote the cost of conflict resolution among the |N | non-shared
entries, which we assume to be Ω(|N |). In our analyses, we will often charge the
cost of traversing conflicting entries to the execution of the conflict resolution
function, when considering the overall cost of a merge.

Main result. Our main result is a functional (and thus confluently persistent)
data structure supporting insert, delete, modifying, and indexing on a map of
size n in O(log n) time per operation; and merging two (versions of) maps in
O(f(|N |)+

∑
S∈S log |S|) time. For example, for a constant number of non-shared

nodes, the merge cost is logarithmic; or more generally, for a constant number
of shared regions, the merge cost is logarithmic plus the conflict resolution cost.
We expect that this adaptive running time will be substantially smaller than the
standard linear-time merge in most practical scenarios.

2 Blame Trees, Version 1
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Fig. 1. An example blame tree, where the latest update was revision E made to key 1.
The values on the leaves are omitted for clarity.

Blame trees represent a text document as a balanced binary search tree
containing strings, augmented with length annotations, to facilitate efficient in-
dexing into arbitrary locations of the document. (Because these annotations are
not relevant for merges, we omit them from our presentation.) Blame trees are



Tree is either:

1: Node(rev, key, val, left, right)
2: Leaf

Fig. 2. Our trees are classic binary search trees annotated with an extra revision field,
indicating the last edit which affected a node or any node in its subtree.

further augmented with a revision rev annotation, which tracks the latest re-
vision to the data structure which affected this node. Updates generate a fresh
revision for the edit and record it on all nodes they touch.

For binary trees, disjoint shared regions correspond directly to disjoint shared
subtrees, e.g., the set of maximum-sized disjoint subtrees which exist identically
(matching keys, values and annotations) in both trees. Any shared region S
can be represented by O(log |S|) shared subtrees. To simplify analysis, we will
instead consider disjoint shared subtrees S̃, and then translate our bounds back
into disjoint shared regions. A useful fact which we will refer to repeatedly is
that |S̃| ≤ 2

∑
S∈S log |S|.

As any modifications to a node must modify all of its parent nodes, the
definition of two shared subtrees in Figure 3 is equivalent (e.g., we only need to
check roots of shared subtrees for equality).

1: function Shared(a, b)
2: return a.key = b.key ∧ a.rev = b.rev
3: end function

Fig. 3. The definition of two shared subtrees.

When the trees in question have identical structure, merging two blame
trees is trivial: traverse both structures in-order and simultaneously. Because the
structures are identical, traversals will be in lock-step, and we can immediately
identify a shared subtree when we first encounter it, and skipping it entirely.
We pay only the cost of visiting the root of every shared subtree, so the cost
of traversal is O(|N | + |S̃|), which in particular is O(|N | +

∑
S∈S log |S|). The

overall cost is O(f(|N |) +
∑

S∈S log |S|), with the cost of traversing conflicting
nodes charged to the conflict resolution function f .

This näıve traversal doesn’t work, however, when the two tree have differ-
ing structures. Additionally, the conflict resolution may return a new subtree
to be spliced in, and thus we need to manage rebalancing the resulting trees.
Consequently, our general strategy for merging balanced search trees of differ-
ent shapes will be to identify the disjoint shared subtrees of the two trees, split
the trees into conflicting and shared regions, resolve the conflicting regions, and
concatenate the trees back together. The core of our algorithm is this:

Lemma 1. It is possible to determine the disjoint shared subtrees S̃ of two bal-
anced blame trees in time O(|N |+

∑
S∈S̃ log |S|) ⊆ O(|N |+

∑
S∈S log2 |S|).



1: function InOrder(a)
2: if a is Node then
3: InOrder(a.left)
4: skip ← yield a . Suspend the coroutine to visit the node
5: if ¬skip then
6: InOrder(a.right)
7: end if
8: end if
9: end function

Fig. 4. In-order traversal as a coroutine: invoking of this function yields a node and a
single-argument continuation to resume traversal. The argument indicates whether or
not traversal of the right subtree upon resumption should be skipped.

1: function Traverse(a, b)
2: na, ka ← InOrder(a)
3: nb, kb ← InOrder(b)
4: while na, nb not Null do
5: if Shared(na, nb) then . na = nb

6: yield na . Add na to list of shared subtrees
7: na, ka ← ka(True) . Skip the right subtree
8: nb, kb ← kb(True)
9: else if na.key ≤ nb.key then

10: na, ka ← ka(False)
11: else if na.key > nb.key then
12: nb, kb ← kb(False)
13: end if
14: end while
15: end function

Fig. 5. Concurrent in-order traversal of two trees, advancing the tree with lowest key
and reporting shared subtrees.

Proof. Perform an in-order traversal concurrently on both trees, advancing the
traversal on the tree with the lower key. This traversal can easily be expressed
as a pair of coroutines, as seen in Figure 4 and Figure 5. If the two nodes being
traversed are roots of shared subtrees, record the node as a shared subtree and
skip traversal of the right child of both trees; continue traversal from the parent.

The resulting list r of shared subtrees will contain “runs” of shared nodes
where r[i] = r[i + 1].left (that is, the parent of the shared subtree was also
shared). Discard all shared subtrees except the final subtree of each run (as any
such tree i is strictly contained in i+ 1), and return the resulting list.

Because in-order traversal returns nodes with monotonically increasing keys,
it is easy to see that, without short circuiting, this traversal will discover all



shared subtrees. Furthermore, because we only skip subtrees of shared subtrees
(which must also be shared), it is easy to see that no shared subtrees are skipped.

An ordinary in-order traversal will take O(n) time, so we need to show that
with our short-circuiting we spend only O(log |S|) per shared subtree S. Suppose
that we have accessed the leftmost node of a shared subtree, with cost O(log |S|);
this must occur before any other nodes of the shared subtree are traversed, as we
are doing in-order traversal. This node is itself a shared subtree (though not the
maximal node), and we will short circuit to the parent. This will occur repeatedly
for the entire path contained within the maximal shared subtree, so after another
O(log |S|) steps, we reach the shared node rooting the maximal shared subtree,
and continue traversal of the rest of the tree. Clearly only O(log |S|) total is
spent through a shared subtree, for O(

∑
S∈S logS).

To translate this bound from shared subtrees into shared regions, we ob-
serve that for any shared region S, the shared subtrees S̃ have the following
property O(

∑
s∈S̃ log |s|) ⊆ O(log2 |S|) (recalling that only O(log |S|) subtrees

are necessary to encode a region S, each with maximum size |S|). The bound
O(|N |+

∑
S∈S log2 |S|) follows. ut

From here, it is easy to implement merge in general:

Theorem 1. Given the ability to split and concatenate a sequence M of blame
trees in O(

∑
M log |M |) time, it is possible to merge two balanced blame trees

with shared disjoint regions S in time O(f(|N |) +
∑

S∈S log2 |S|).

Proof. We need to show that the cost of traversal and conflict resolution domi-
nates the cost of splitting and concatenating trees; that is, thatO(

∑
M log |M |) ⊆

O(f(|N |) +
∑

S∈S̃ log |S|). We split this bound into shared regions S and un-
shared regions U . For S, the cost contributed by each shared subtree |S| is a
log |S| factor better than the cost of traversal as stated in the lemma. For U , we
observe

∑
U∈U log |U | ≤ |N |, so the cost of splitting and concatenating unshared

nodes can be charged to conflict resolution. ut

3 Faster Traversal

We now show how to achieve a logarithmic speedup when considering a specific
type of balanced binary tree, namely red-black trees. Our traversal time improves
from O(|N | +

∑
S∈S log2 |S|) to O(|N | +

∑
S∈S log |S|). This method relies on

level-order traversal. We first describe the algorithm for perfect binary trees,
and then sketch how to apply this to red-black trees, which are not perfectly
balanced, but are perfectly balanced on black nodes.

Lemma 2. It is possible to determine the shared subtrees S̃ of two perfect bi-
nary trees annotated with precise max-depth in time O(|N |+ |S̃|), e.g. O(|N |+∑

S∈S log |S|)).



Proof. We maintain two queues, one for tree A and one for tree B. Each queue
starts containing the root node of its respective tree. Without loss of generality,
assume the max-depth of the two trees are equal (if they are not, recursively
deconstruct the tree until you have a forest of correct depth; the nodes removed
by the deconstruction are guaranteed not to be shared, because they have the
wrong height.)

Claim. The list of elements extracted from each queue consists of the nodes of
depth d whose parents were non-shared and had depth d+ 1, sorted in order of
their key.

If the claim is true, we can perform a merge of sorted lists in linear time, and
for any matching keys we check if the nodes are shared subtrees. (This is suf-
ficient, as nodes with different max-depths or non-equal keys cannot be shared
subtrees.) Finally, for all non-shared nodes add their children to their corre-
sponding queue in order of the lists and repeat. The full algorithm is presented
in Figure 6.

We first show that our claim is true by induction on d. The base case is
trivial. Suppose that the algorithm has fulfilled the claim up until the current
round d. We consider the possible sources of nodes of depth d; by the properties
of a perfect binary tree, the parent of a node with max-depth d must have max-
depth d + 1. Furthermore, the node would not have been added if the parent
were shared, as desired.

Observing that only non-shared nodes, or the roots of maximal shared sub-
trees ever enter the queue, if queue pop and push operations take O(1), then
time bound O(|N | + |S̃|) follows easily; the alternate formulation of the bound
falls easily out of the fact that any S ∈ S can only contribute log |S| roots of
shared subtrees. ut

In general, most practical self-balancing binary search trees will not be per-
fect. However, in the case of red-black trees, the number of black nodes down
any path of the tree is constant. So we can adapt the algorithm for perfect trees
to only count black nodes towards depth, and expand red nodes into two black
nodes during the merge step. This means that we do not ever check red nodes
to see if they are shared subtrees, but this only adds a constant factor extra
time on the analysis. Note that this technique does not work if the tree is not
perfectly balanced in some fashion: without perfect balance, we will encounter
nodes whose max-depths are much lower than the current max-depth which still
must be queued. Switching our queue to a priority queue to accommodate these
nodes would result in a logarithmic slowdown, destroying our bound.

Our final result follows easily:

Theorem 2. It is possible to merge two red-black blame trees with shared dis-
joint regions S in time O(f(|N |) +

∑
S∈S log |S|).

Proof. The analysis proceeds identically as our previous Theorem 1, except that
the cost of splitting and concatenating the red-black trees is the same as the
traversal in the case of shared regions S. ut



1: function PushChildrenPop(Q)
2: x ← Pop(Q)
3: Push(Q, x.left)
4: Push(Q, x.right)
5: end function
6: function LevelTraverse(a, b)
7: Qa, Qb ← Singleton(a), Singleton(b)
8: while ¬(Empty(Qa) ∨ Empty(Qb)) do
9: na, nb ← Peek(Qa), Peek(Qb)

10: if Shared(na, nb) then
11: yield na

12: Pop(Qa)
13: Pop(Qb)
14: else if na.depth > nb.depth then
15: PushChildrenPop(Qa)
16: else if na.depth < nb.depth then
17: PushChildrenPop(Qb)
18: else if na.key ≤ nb.key then
19: PushChildrenPop(Qa)
20: else if na.key > nb.key then
21: PushChildrenPop(Qb)
22: end if
23: end while
24: end function

Fig. 6. Level-order traversal of two perfect trees.
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