Skip to main content

Graded Modal Logic GS5 and Itemset Support Satisfiability

  • Conference paper
Information Search, Integration and Personalization (ISIP 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 146))

  • 388 Accesses

Abstract

Graded modal logic GS5 is an extension of S5 by the modal connective \(\diamondsuit_\lambda\): the formula \(\diamondsuit_\lambda A\) means that there are at least λ worlds satisfying A. In this paper, we show how to reduce GS5 satisfiability to propositional satisfiability (SAT). Furthermore, we consider a satisfiability problem related to the frequent itemset mining problem: SUPPSAT n (where n is a strictly positive integer). We show how SUPPSAT n can be encoded in GS5 satisfiability and consequently in SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216. ACM Press (1993)

    Google Scholar 

  2. Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS, vol. 6188, pp. 98–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artificial Intelligence 88(1-2), 195–213 (1996)

    Article  MATH  Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)

    Google Scholar 

  5. Calders, T.: Axiomatization and Deduction Rules for the Frequency of Itemsets. PhD Thesis. Universiteit Antwerpen (2003)

    Google Scholar 

  6. Calders, T.: Itemset frequency satisfiability: Complexity and axiomatization. Theoretical Computer Science 394(1-2), 84–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fine, K.: Cut-free modal sequents for normal modal logics. Notre-Dame Journal of Formal Logic 13(4), 516–520 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitting, M.: Proof methods for modal and intuitionistic logics. Synthese Library, vol. 169. Kluwer (1983)

    Google Scholar 

  9. Fitting, M.: A simple propositional S5 tableau system. the Annals of Pure and Applied Logic 96, 107–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: Sat vs. Translation Based decision procedures for modal logics: a comparative evaluation. Journal of Applied Non-Classical Logics 10(2) (2000)

    Google Scholar 

  11. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: Sat-based decision procedures for classical modal logics. J. Autom. Reasoning 28(2), 143–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing Letters (1996)

    Google Scholar 

  13. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal Computation 6(3), 467–480 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mielikäinen, T.: On Inverse Frequent Set Mining. In: 2nd IEEE ICDM Workshop on Privacy Preserving Data Mining (PPDM), pp. 18–23. IEEE (2003)

    Google Scholar 

  15. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34, 507–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohlbach, H.J.: Semantics-based translation methods for modal logics. J. Log. Comput. 1(5), 691–746 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sebastiani, R., McAllester, D.: New upper bounds for satisfiability in modal logics – the case-study of modal K (1997)

    Google Scholar 

  18. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In: Slesenko, H.A.O. (ed.) Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

    Google Scholar 

  21. van der Hoek, W., de Rijke, M.: Counting Objects. Journal of Logic and Computation 5(3), 325–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 61–145. Kluwer, Dordrecht (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salhi, Y., Jabbour, S., Sais, L. (2013). Graded Modal Logic GS5 and Itemset Support Satisfiability. In: Tanaka, Y., Spyratos, N., Yoshida, T., Meghini, C. (eds) Information Search, Integration and Personalization. ISIP 2012. Communications in Computer and Information Science, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40140-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40140-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40139-8

  • Online ISBN: 978-3-642-40140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics