Skip to main content

Planning UMTS Base Station Location Using Genetic Algorithm with a Dynamic Trade-Off Parameter

  • Conference paper
Networked Systems (NETYS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7853))

Included in the following conference series:

  • 916 Accesses

Abstract

In this paper, we address the problem of planning the universal mobile telecommunication system (UMTS) base stations location for uplink direction. The objective is to maximize the total trafic covered f and minimize the total installation cost g. This problem is modelled in the form of multi-objective optimization problem that can be transformed into a mono-objective problem of the form f + λg, where λ > 0 is a trade-off parameter between the objective functions f and g. Our aim here is to present a solution method to the problem based on a genetic algorithm (GA), which automates the choice of the parameter λ by varying it at each iteration of the algorithm. To apply the GA to our problem, we have proposed a special coding that combines the binary and integer coding. To validate the proposed method some numerical examples are given. The obtained results show the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amaldi, E., Capone, A., Malucelli, F.: Planning UMTS Base Station Location: Optimization Models With Power Control and Algorithms. IEEE Transactions on wireless communications 2, 939–952 (2003)

    Article  Google Scholar 

  2. Berruto, E., Gudmundson, M., Menolascino, R., Mohr, W., Pizarroso, M.: Research activities on UMTS radio interface, network architectures, and planning. IEEE Communications Magazine 36, 82–95 (1998)

    Article  Google Scholar 

  3. Naghshineh, M., Katzela, I.: Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey. IEEE Personal Communications 3, 10–31 (1996)

    Article  Google Scholar 

  4. St-Hilaire, M., Chamberland, S., Pierre, S.: Uplink UMTS network design-an integrated approach. Computer Networks 50, 2747–2761 (2006)

    Article  MATH  Google Scholar 

  5. Juttner, A., Orban, A., Fiala, Z.: Two new algorithms for UMTS access network topology design. European Journal of Operational Research 164, 456–474 (2005)

    Article  Google Scholar 

  6. Hashemi, S.M., Moradi, A., Rezapour, M.: An ACO algorithm to design UMTS access network using divided and conquer technique. Engineering Applications of Artificial Intelligence 21, 931–940 (2008)

    Article  Google Scholar 

  7. Meunier, H.: Algorithmes évolutionnaires parallèles pour l’optimisation multi objectif de réseaux de télécommunications mobiles. PhD thesis, University of Sciences and Technologies, Lille (2002)

    Google Scholar 

  8. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Métaheuristiques pour l’optimisation difficile. Eyrolles, Paris (2003)

    Google Scholar 

  9. Talbi, E.G., Basseur, M., Nebro, A.G., Alba, E.: Multi-objective optimization using metaheuristics: non-standard algorithms. International Transactions in Operational Research 19, 283–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley and Sons (2009)

    Google Scholar 

  11. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of an International Conference on Genetic Algorithms and their Applications, pp. 93–100 (1985)

    Google Scholar 

  12. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms. IEE Colloquium on Genetic Algorithms for Control Systems Engineering 6(1-5) (1993)

    Google Scholar 

  13. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. IEEE World Congress on Computational Intelligence, pp. 82–87 (1994)

    Google Scholar 

  14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 257–271 (1999)

    Google Scholar 

  15. Nakibe, A.: Conception de métaheuristiques d’optimisation pour la segmentation d’images. Application des images biomédicales. PhD thesis, UFR of Sciences and Technology, University PARIS 12-VAL DE MARNE (2007)

    Google Scholar 

  16. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization. IOP Publishing, Bristol (2000)

    Google Scholar 

  17. Jin, Y., Okabe, T., Sendhoff, B.: Adapting Weighted Aggregation for Multiobjective Evolution Strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Amaldi, E., Capone, A., Malucelli, F., Signori, F.: Radio Planning and Optimization of W-CDMA Systems. Personal Wireless Communications, 437–447 (2003)

    Google Scholar 

  19. Hata, M.: Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Transactions on Vehicular Technology 29, 317–325 (1980)

    Article  Google Scholar 

  20. Amaldi, E., Capone, A., Malucelli, F.: Radio planning and coverage optimization of 3G cellular networks. Wireless Networks 14, 435–447 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabli, M., Jaara, E.M., Mermri, E.B. (2013). Planning UMTS Base Station Location Using Genetic Algorithm with a Dynamic Trade-Off Parameter. In: Gramoli, V., Guerraoui, R. (eds) Networked Systems. NETYS 2013. Lecture Notes in Computer Science, vol 7853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40148-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40148-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40147-3

  • Online ISBN: 978-3-642-40148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics