Abstract
Traditionally, most process mining techniques aim at discovering procedural process models (e.g., Petri nets, BPMN, and EPCs) from event data. However, the variability present in less-structured flexible processes complicates the discovery of such procedural models. The “open world” assumption used by declarative models makes it easier to handle this variability. However, initial attempts to automatically discover declarative process models result in cluttered diagrams showing misleading constraints. Moreover, additional data attributes in event logs are not used to discover meaningful causalities. In this paper, we use correlations to prune constraints and to disambiguate event associations. As a result, the discovered process maps only show the more meaningful constraints. Moreover, the data attributes used for correlation and disambiguation are also used to find discriminatory patterns, identify outliers, and analyze bottlenecks (e.g., when do people violate constraints or miss deadlines). The approach has been implemented in ProM and experiments demonstrate the improved quality of process maps and diagnostics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
XES Standard Definition (2009), www.xes-standard.org
3TU Data Center: BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB, pp. 487–499 (1994)
Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-Oriented Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245–259. Springer, Heidelberg (2007)
Binder, M., Dorda, W., Duftschmid, G., Dunkl, R., Fröschl, K.A., Gall, W., Grossmann, W., Harmankaya, K., Hronsky, M., Rinderle-Ma, S., Rinner, C., Weber, S.: On Analyzing Process Compliance in Skin Cancer Treatment: An Experience Report from the Evidence-Based Medical Compliance Cluster (EBMC2). In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398–413. Springer, Heidelberg (2012)
Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of Patient Treatment Procedures: The BPI Challenge Case Study. Technical Report BPM-11-18, BPMCenter.org (2011)
Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)
Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)
IEEE Task Force on Process Mining: Process Mining Manifesto. In: Guessarian, I. (ed.) Algebraic Semantics. LNBIP, vol. 99, pp. 169–194. Springer, Berlin (1981)
Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. International Journal on Software Tools for Technology Transfer, 224–233 (2003)
de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning Event Logs and Declarative Process Models for Conformance Checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012)
Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: KDD, pp. 80–86. The AAAI Press (1998)
Ly, L.T., Indiono, C., Mangler, J., Rinderle-Ma, S.: Data Transformation and Semantic Log Purging for Process Mining. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 238–253. Springer, Heidelberg (2012)
Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring Business Process Compliance Using Compliance Rule Graphs. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg (2011)
Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Understandable Declarative Models from Event Logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)
Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A Knowledge-Based Integrated Approach for Discovering and Repairing Declare Maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)
Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining, vol. 2725, pp. 192–199. IEEE Computer Society (2011)
Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Process Discovery from Web Service Interaction Logs. The VLDB Journal 20(3), 417–444 (2011)
Perez-Castillo, R., Weber, B., Guzmn, I.R., Piattini, M., Pinggera, J.: Assessing Event Correlation in Non-Process-Aware Information Systems. Software & Systems Modeling, 1–23 (2012)
Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative Versus Declarative Process Modeling Languages: An Empirical Investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering Event Correlation Rules for Semi-structured Business Processes. In: DEBS, pp. 75–86 (2011)
Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-Play Virtual Factories. IEEE Internet Computing 16(5), 78–82 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P. (2013). Enhancing Declare Maps Based on Event Correlations. In: Daniel, F., Wang, J., Weber, B. (eds) Business Process Management. Lecture Notes in Computer Science, vol 8094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40176-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40176-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40175-6
Online ISBN: 978-3-642-40176-3
eBook Packages: Computer ScienceComputer Science (R0)