Abstract
We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over ℤ is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.
Omitted proofs can be found in [4]. This work is supported by the DFG Research Training Group 1763 (QuantLA). The second author is supported by the DFG research project GELO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: Proc. STACS 2012. LIPIcs, vol. 14, pp. 648–660. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)
Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees (long version), http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf
Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative Presburger constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg (2006)
Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL* with constraints Technical report, arXiv.org (2013), http://arxiv.org/abs/1306.0814
Čerāns, K.: Deciding properties of integral relational automata. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994)
Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: Proc. LICS 2010, pp. 70–79. IEEE Computer Society (2010)
Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)
Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Comput. 205(3), 380–415 (2007)
Demri, S., Gascon, R.: Verification of qualitative ℤ constraints. Theor. Comput. Sci. 409(1), 24–40 (2008)
Gascon, R.: An automata-based approach for CTL* with constraints. Electr. Notes Theor. Comput. Sci. 239, 193–211 (2009)
Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal Logic 4, pp. 265–296. King’s College Publications (2003)
Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artificial Intelligence 152(2), 235–274 (2004)
Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM Trans. Comput. Log. 5(4), 669–705 (2004)
Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carapelle, C., Kartzow, A., Lohrey, M. (2013). Satisfiability of CTL* with Constraints. In: D’Argenio, P.R., Melgratti, H. (eds) CONCUR 2013 – Concurrency Theory. CONCUR 2013. Lecture Notes in Computer Science, vol 8052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40184-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-40184-8_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40183-1
Online ISBN: 978-3-642-40184-8
eBook Packages: Computer ScienceComputer Science (R0)