Satisfiability of CTL* with constraints ${ }^{\star}$

Claudia Carapelle, Alexander Kartzow, and Markus Lohrey
Institut für Informatik, Universität Leipzig, Germany

Abstract

We show that satisfiability for CTL* with equality-, order-, and mod-ulo-constraints over \mathbb{Z} is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.

1 Introduction

Temporal logics like LTL, CTL or CTL* are nowadays standard languages for specifying system properties in model-checking. They are interpreted over node labeled graphs (Kripke structures), where the node labels (also called atomic propositions) represent abstract properties of a system. Clearly, such an abstracted system state does in general not contain all the information of the original system state. Consider for instance a program that manipulates two integer variables x and y. A useful abstraction might be to introduce atomic propositions $v_{-2^{32}}, \ldots, v_{2^{32}}$ for $v \in\{x, y\}$, where the meaning of v_{k} for $-2^{32}<k<2^{32}$ is that the variable $v \in\{x, y\}$ currently holds the value k, and $v_{-2^{32}}$ (resp., $v_{2^{32}}$) means that the current value of v is at most -2^{32} (resp., at least 2^{32}). It is evident that such an abstraction might lead to incorrect results in model-checking.

To overcome these problems, extensions of temporal logics with constraints have been studied. Let us explain the idea in the context of LTL. For a fixed relational structure \mathcal{A} (typical examples for \mathcal{A} are number domains like the integers or rationals extended with certain relations) one adds atomic formulas of the form $r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ (so called constraints) to standard LTL. Here, r is (a name of) one of the relations of the structure $\mathcal{A}, i_{1}, \ldots, i_{k} \geq 0$, and x_{1}, \ldots, x_{k} are variables that range over the universe of \mathcal{A}. An LTL-formula containing such constraints is interpreted over (infinite) paths of a standard Kripke structure, where in addition every node (state) associates with each of the variables x_{1}, \ldots, x_{k} an element of \mathcal{A} (one can think of \mathcal{A}-registers attached to the system states). A constraint $r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ holds in a path $s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \cdots$ if the tuple $\left(a_{1}, \ldots, a_{k}\right)$, where a_{j} is the value of variable x_{j} at state $s_{i_{j}}$, belongs to the \mathcal{A}-relation r. In this way, the values of variables at different system states can be compared. In our example from the first paragraph, one might choose for \mathcal{A} the structure $\left(\mathbb{Z},<,=,\left(=_{a}\right)_{a \in \mathbb{Z}}\right)$, where $={ }_{a}$ is the unary predicate that only holds for a. This structure has infinitely many predicates, which is not a problem; our main result will actually talk about an expansion of $\left(\mathbb{Z},<,=,\left(=_{a}\right)_{a \in \mathbb{Z}}\right)$. Then, one might for instance write down a formula $\left(<\left(x, \mathrm{X}^{1} y\right)\right) \mathrm{U}\left(=_{100}(y)\right)$ which holds on a path if and only if there is a point of time where variable y holds the value 100 and for all previous points of time t, the value of x at time t is strictly smaller than the value of y at time $t+1$.

[^0]In [8], Demri and Gascon studied LTL extended with constraints from a language IPC*. If we disregard succinctness aspects, these constraints are equivalent to constraints over the structure

$$
\begin{equation*}
\mathcal{Z}=\left(\mathbb{Z},<,=,\left(={ }_{a}\right)_{a \in \mathbb{Z}},\left(\equiv_{a, b}\right)_{0 \leq a<b}\right), \tag{1}
\end{equation*}
$$

where $={ }_{a}$ denotes the unary relation $\{a\}$ and $\equiv_{a, b}$ denotes the unary relation $\{a+x b \mid$ $x \in \mathbb{Z}\}$ (expressing that an integer is congruent to a modulo b). The main result from [8] states that satisfiability of LTL with constraints from \mathcal{Z} is decidable and in fact PSPACE-complete, and hence has the same complexity as satisfiability for LTL without constraints. We should remark that the PSPACE upper bound from [8] even holds for the succinct IPC* ${ }^{*}$-representation of constraints used in [8].

In the same way as outlined for LTL above, constraints can be also added to CTL and CTL* (then, constraints $r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ are path formulas). A weak form of CTL* with constraints from \mathcal{Z} (where only integer variables and the same state can be compared) was first introduced in [4], where it is used to describe properties of infinite transition systems, represented by relational automata. There it is shown that the model checking problem for CTL* over relational automata is undecidable.

Demri and Gascon [8] asked whether satisfiability of CTL* with constraints from \mathcal{Z} over Kripke structures is decidable. This problem was investigated in [39], where several partial results where shown: If we replace in \mathcal{Z} the binary predicate $<$ by unary predicates $<_{c}=\{x \mid x<c\}$ for $c \in \mathbb{Z}$, then satisfiability for CTL^{*} is decidable by [9]. While, for the full structure \mathcal{Z} satisfiability is decidable for the CTL^{*} fragment CEF^{+} (which contains the existential and universal fragment of CTL* as well as EF) [3].

In this paper we prove that CTL^{*} with constraints over \mathcal{Z} is decidable. Our proof is divided into two steps. The first step provides a tool to prove decidability of CTL* with constraints over any structure \mathcal{A} over a countable (finite or infinite) signature \mathcal{S} (the structure \mathcal{A} has to satisfy the additional property that the complement of any of its relations has to be definable in positive existential first-order logic over \mathcal{A}). Let \mathcal{L} be a logic that satisfies the following two properties: (i) satisfiability of a given \mathcal{L}-sentence over the class of infinite node-labeled trees is decidable, and (ii) \mathcal{L} is closed under boolean combinations with monadic second-order formulas (MSO). A typical such logic is MSO itself. By Rabin's seminal tree theorem [14], satisfiability of MSO-sentences over infinite node-labeled trees is decidable. Assuming \mathcal{L} has these two properties, we prove that satisfiability of CTL* with constraints over \mathcal{A} is decidable if one can compute from a given finite subsignature $\sigma \subseteq \mathcal{S}$ an \mathcal{L}-sentence ψ_{σ} (over the signature σ) such that for every countable σ-structure $\mathcal{B}: \mathcal{B} \models \psi_{\sigma}$ if and only if there exists a homomorphism from \mathcal{B} to \mathcal{A} (i.e., a mapping from the domain of \mathcal{B} to the domain of \mathcal{A} that preserves all relations from σ). We say that the structure \mathcal{A} has the property $\operatorname{EHomDef}(\mathcal{L})$ if such a computable function $\sigma \mapsto \psi_{\sigma}$ exists. EHomDefstands for "existence of homomorphism is definable". For instance, the structure $(\mathbb{Q},<,=)$ has the property EHomDef(MSO), see Example 7

It is not clear whether \mathcal{Z} from (1) has the property $\operatorname{EHomDef}(\mathrm{MSO})$ (we conjecture that it does not). Hence, we need a different logic. It turns out that \mathcal{Z} has the property $\mathrm{EHomDef}(\mathrm{WMSO}+\mathrm{B})$, where $\mathrm{WMSO}+\mathrm{B}$ is the extension of weak monadic secondorder logic (where only quantification over finite subsets is allowed) with the bounding
quantifier B . A formula $\mathrm{B} X: \varphi$ holds in a structure \mathcal{A} if and only if there exists a bound $b \in \mathbb{N}$ such that for every finite subset B of the domain of \mathcal{A} with $\mathcal{A} \models \varphi(B)$ we have $|B| \leq b$. Recently, Bojańczyk and Toruńczyk have shown that satisfiability of WMSO + B over infinite node-labeled trees is decidable [1]. The next problem is that WMSO +B is not closed under boolean combinations with MSO-sentences. But fortunately, the decidability proof for $\mathrm{WMSO}+\mathrm{B}$ can be extended to boolean combinations of MSO-sentences and (WMSO +B)-sentences, see Section 3 for details. This finally shows that satisfiability of CTL* with constraints from \mathcal{Z} is decidable.

While it would be extremely useful to add successor constraints $(y=x+1)$ to \mathcal{Z}, this would lead to undecidability even for LTL [7] and the very basic description logic $\mathcal{A L C}$ [12], which is basically multi-modal logic. Nonetheless \mathcal{Z} allows qualitative representation of increment, for example $x=y+1$ can be abstracted by $(y>x) \wedge$ ($\equiv_{1,2^{k}}(y)$) where k is a large natural number. This is why temporal logics extended with constraints over \mathcal{Z} seem to be a good compromise between (unexpressive) total abstraction and (undecidable) high concretion.

In the area of knowledge representation, extensions of description logics with constraints from so called concrete domains have been intensively studied, see [10] for a survey. In [11], it was shown that the extension of the description logic $\mathcal{A L C}$ with constraints from $(\mathbb{Q},<,=)$ has a decidable (EXPTIME-complete) satisfiability problem with respect to general TBoxes (also known as general concept inclusions). Such a TBox can be seen as a second $\mathcal{A L C}$-formula that has to hold in all nodes of a model. Our decidability proof is partly inspired by the construction from [11], which in contrast to our proof is purely automata-theoretic. Further results for description logics and concrete domains can be found in [12[13].

Unfortunately, our proof does not yield any complexity bound for satisfiability of CTL^{*} with constraints from \mathcal{Z}. The boolean combinations of (WMSO+B)-sentences and MSO sentences that have to be checked for satisfiability (over infinite trees) are of a simple structure, in particular their quantifier depth is not high. But no complexity statement for satisfiability of WMSO + B is made in [1], and it seems to be difficult to analyze the algorithm from [1] (but it seems to be elementary for a fixed quantifier depth). It is based on a construction for cost functions over finite trees from [5], where the authors only note that their construction seems to have very high complexity.

2 Preliminaries

Let $[1, d]=\{1, \ldots, d\}$. For a word $w=a_{1} a_{2} \cdots a_{l} \in[1, d]^{*}$ and $k \leq l$ we define $w[: k]=a_{1} a_{2} \cdots a_{k}$; it is the prefix of w of length k.

Let P be a countable set of (atomic) propositions. A Kripke structure over P is a triple $\mathcal{K}=(D, \rightarrow, \rho)$, where (i) D is an arbitrary set of nodes (or states), (ii) \rightarrow is a binary relation on D such that for every $u \in D$ there exists $v \in D$ with $u \rightarrow v$, and (iii) $\rho: D \rightarrow 2^{\mathrm{P}}$ assigns to every node the set of propositions that hold in the node. We require that $\bigcup_{v \in D} \rho(v)$ is finite, i.e., only finitely many propositions appear in \mathcal{K}. A \mathcal{K}-path is an infinite sequence $\pi=\left(v_{0}, v_{1}, v_{2}, \ldots\right)$ such that $v_{i} \rightarrow v_{i+1}$ for all $i \geq 0$. For $i \geq 0$ we define the state $\pi(i)=v_{i}$ and the path $\pi^{i}=\left(v_{i}, v_{i+1}, v_{i+2}, \ldots\right)$. A Kripke d-tree is a Kripke structure of the form $\mathcal{K}=\left([1, d]^{*}, \rightarrow, \rho\right)$, where \rightarrow contains all pairs
$(u, u i)$ with $u \in[1, d]^{*}$ and $1 \leq i \leq d$, i.e., $\left([1, d]^{*}, \rightarrow\right)$ is a tree with root ε where every node has d children.

A signature is a countable (finite or infinite) set \mathcal{S} of relation symbols. Every relation symbol $r \in \mathcal{S}$ has an associated arity $\operatorname{ar}(r) \geq 1$. An \mathcal{S}-structure is a pair $\mathcal{A}=(A, I)$, where A is a non-empty set and I maps every $r \in \mathcal{S}$ to an $\operatorname{ar}(r)$-ary relation over A. Quite often, we will identify the relation $I(r)$ with the relation symbol r, and we will specify an \mathcal{S}-structure as $\left(A, r_{1}, r_{2}, \ldots\right)$ where $\mathcal{S}=\left\{r_{1}, r_{2}, \ldots\right\}$. The \mathcal{S}-structure $\mathcal{A}=(A, I)$ is negation-closed if there exists a computable function that maps a relation symbol $r \in \mathcal{S}$ to a positive existential first-order formula $\varphi_{r}\left(x_{1}, \ldots, x_{\mathrm{ar}(r)}\right)$ (i.e., a formula that is built up from atomic formulas using \wedge, \vee, and \exists) such that $A^{\text {ar }(r)} \backslash I(r)=$ $\left\{\left(a_{1}, \ldots, a_{\operatorname{ar}(r)}\right) \mid \mathcal{A} \vDash \varphi_{r}\left(a_{1}, \ldots, a_{\operatorname{ar}(r)}\right)\right\}$. In other words, the complement of every relation $I(r)$ must be effectively definable by a positive existential first-order formula.

Example 1. The structure \mathcal{Z} from (1) is negation-closed (we will write $x=a$ instead of $={ }_{a}(x)$ and similarly for $\left.\equiv_{a, b}\right)$. We have for instance:

- $x \neq y$ if and only if $x<y$ or $y<x$.
- $x \neq a$ if and only if $\exists y \in \mathbb{Z}: y=a \wedge(x<y \vee y<x)$.
$-x \not \equiv a \bmod b$ if and only if $x \equiv c \bmod b$ for some $0 \leq c<b$ with $a \neq c$.
For a subsignature $\sigma \subseteq \mathcal{S}$, a σ-structure $\mathcal{B}=(B, J)$ and an \mathcal{S}-structure $\mathcal{A}=(A, I)$, a homomorphism $h: \mathcal{B} \rightarrow \mathcal{A}$ is a mapping $h: B \rightarrow A$ such that for all $r \in \sigma$ and all tuples $\left(b_{1}, \ldots, b_{\operatorname{ar}(r)}\right) \in J(r)$ we have $\left(h\left(b_{1}\right), \ldots, h\left(b_{\operatorname{ar}(r)}\right)\right) \in I(r)$. We write $\mathcal{B} \preceq \mathcal{A}$ if there is a homomorphism from \mathcal{B} to \mathcal{A}.

3 MSO and WMSO + B

Recall that monadic second-order logic (MSO) is the extension of first-order logic where also quantification over subsets of the underlying structure is allowed. We assume that the reader has some familiarity with MSO. Weak monadic second-order logic (WMSO) has the same syntax as MSO but second-order variables only range over finite subsets of the underlying structure. Finally, WMSO + B is the extension of WMSO by the additional quantifier $\mathrm{B} X: \varphi$ (the bounding quantifier). The semantics of $\mathrm{B} X: \varphi$ in the structure $\mathcal{A}=(A, I)$ is defined as follows: $\mathcal{A} \models \mathrm{B} X: \varphi(X)$ if and only if there is a bound $b \in \mathbb{N}$ such that $|B| \leq b$ for every finite subset $B \subseteq A$ with $\mathcal{A} \models \varphi(B)$.

Example 2. For later use, we state some example formulas. Let $\varphi(x, y)$ be a WMSOformula with two free first-order variables x and y. Let $\mathcal{A}=(A, I)$ be a structure and let $E=\{(a, b) \in A \times A \mid \mathcal{A} \models \varphi(a, b)\}$ be the binary relation defined by $\varphi(x, y)$. We define the WMSO-formula reach ${ }_{\varphi}(a, b)$ to be

$$
\exists X \forall Y(a \in Y \wedge \forall x \forall y((x \in Y \wedge y \in X \wedge \varphi(x, y)) \rightarrow y \in Y) \rightarrow b \in Y)
$$

It is straightforward to prove that $\mathcal{A} \models \operatorname{reach}_{\varphi}(a, b)$ if and only if $(a, b) \in E^{*}$. Note that reach ${ }_{\varphi}$ is the standard MSO-formula for reachability but restricted to some finite induced subgraph. Clearly, b is reachable from a in the graph (A, E) if and only if it is in some finite subgraph of (A, E).

Let $\mathrm{ECycle}_{\varphi}=\exists x \exists y\left(\operatorname{reach}_{\varphi}(x, y) \wedge \varphi(y, x)\right)$ be the WMSO -formula expressing that there is a cycle in (A, E).

Given a second-order variable Z, we define $\operatorname{reach}_{\varphi}^{Z}(a, b)$ to be
$a \in Z \wedge \forall Y \subseteq Z(a \in Y \wedge \forall x \forall y((x \in Y \wedge y \in Z \wedge \varphi(x, y)) \rightarrow y \in Y) \rightarrow b \in Y)$.
We have $\mathcal{A} \models \operatorname{reach}_{\varphi}^{Z}(a, b)$ iff b is reachable from a in the subgraph of (A, E) induced by the (finite) set Z. Note that $\mathcal{A} \models \operatorname{reach}_{\varphi}^{Z}(a, b)$ implies $\{a, b\} \subseteq Z$.

For the next examples we restrict our attention the case that the graph (A, E) defined by $\varphi(x, y)$ is acyclic. Hence, the reflexive transitive closure E^{*} is a partial order on A. Note that a finite set $F \subseteq A$ is an E-path from $a \in F$ to $b \in F$ if and only if $\left(F,(E \cap(F \times F))^{*}\right)$ is a finite linear order with all elements between a and b. Define the WMSO -formula $\mathrm{Path}_{\varphi}(a, b, Z)$ as

$$
\forall x \in Z \forall y \in Z\left(\operatorname{reach}_{\varphi}^{Z}(x, y) \vee \operatorname{reach}_{\varphi}^{Z}(y, x)\right) \wedge \operatorname{reach}_{\varphi}^{Z}(a, x) \wedge \operatorname{reach}_{\varphi}^{Z}(x, b)
$$

For every acyclic (A, E) we have $\mathcal{A} \models \operatorname{Path}_{\varphi}(a, b, P)$ if and only if P contains exactly the nodes along an E-path from a to b.

We finally define the $\mathrm{WMSO}+\mathrm{B}$-formula $\mathrm{BPaths}_{\varphi}(x, y)=\mathrm{B} Z: \operatorname{Path}_{\varphi}(x, y, Z)$. By definition of the quantifier B , if (A, E) is acyclic, then $\mathcal{A} \models \operatorname{BPaths}_{\varphi}(a, b)$ if and only if there is a bound $k \in \mathbb{N}$ on the length of any E-path from a to b.
Next, let Bool(MSO, WMSO + B) be the set of all Boolean combinations of MSOformulas and (WMSO +B)-formulas. We will use the following result.

Theorem 3 (cf. [1]). One can decide whether for a given $d \in \mathbb{N}$ and a formula $\varphi \in$ Bool(MSO, WMSO + B) there exists a Kripke d-tree \mathcal{K} such that $\mathcal{K} \models \varphi$.

Proof. This theorem follows from results of Bojańczyk and Toruńczyk [12]. They introduced puzzles which can be seen as pairs $P=(A, C)$, where A is a parity tree automaton and C is an unboundedness condition C which specifies a certain set of infinite paths labeled by states of A. A puzzle accepts a tree \mathcal{T} if there is an accepting run ρ of A on \mathcal{T} such that for each infinite path π occurring in $\rho, \pi \in C$ holds. In particular, ordinary parity tree automata can be seen as puzzles with trivial unboundedness condition. The proof of our theorem combines the following results.

Lemma 4 ([1]). From a given (WMSO+B)-formula φ and $d \in \mathbb{N}$ one can construct a puzzle P_{φ} such that φ is satisfied by some Kripke d-tree iff P_{φ} is nonempty.

Lemma 5 ([1]). Emptiness of puzzles is decidable.
Lemma 6 (Lemma 17 of [2]). Puzzles are effectively closed under intersection.
Let $\varphi \in \operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$. First, φ can be effectively transformed into a disjunction $\bigvee_{i=1}^{n}\left(\varphi_{i} \wedge \psi_{i}\right)$ where $\varphi_{i} \in \mathrm{MSO}$ and $\psi_{i} \in \mathrm{WMSO}+\mathrm{B}$ for all i. By Lemma4, we can construct a puzzle P_{i} for ψ_{i}. It is known that the MSO -formula φ_{i} can be translated into a parity tree automaton A_{i}. Let P_{i}^{\prime} be a puzzle recognizing the intersection of P_{i} and A_{i} (cf. Lemma6). Now φ is satisfiable over Kripke d-trees if and only if there is an i such that $\varphi_{i} \wedge \psi_{i}$ is satisfiable over Kripke d-trees if and only if there is an i such that P_{i}^{\prime} is nonempty. By Lemma[5, the latter condition is decidable which concludes the proof of the theorem.

Let \mathcal{L} be a logic (e.g. MSO or $\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$). An \mathcal{S}-structure \mathcal{A} has the property $\operatorname{EHomDef}(\mathcal{L})$ (existence of homomorphisms to \mathcal{A} is \mathcal{L}-definable) if there is a computable function that maps a finite subsignature $\sigma \subseteq \mathcal{S}$ to an \mathcal{L}-sentence φ_{σ} such that for every countable σ-structure $\mathcal{B}: \mathcal{B} \preceq \mathcal{A}$ if and only if $\mathcal{B} \models \varphi_{\sigma}$.

Example 7. The structure $\mathcal{Q}=(\mathbb{Q},<,=)$ has the property EHomDef(WMSO) (and EHomDef(MSO)). In [11] it is implicitly shown that for a countable $\{<,=\}$-structure $\mathcal{B}=(B, I), \mathcal{B} \preceq \mathcal{Q}$ if and only if there does not exist $(a, b) \in I(<)$ such that $(b, a) \in$ $\left(I(<) \cup I(=) \cup I(=)^{-1}\right)^{*}$. This condition can be easily expressed in WMSO using the reach-construction from Example 2 Note that $I(=)$ is not required to be the identity relation on B.

4 CTL* with constraints

Let us fix a countably infinite set of atomic propositions P and a countably infinite set of variables V for the rest of the paper. Let \mathcal{S} be a signature. We define an extension of CTL* with constraints over the signature \mathcal{S}. We define $\mathrm{CTL}^{*}(\mathcal{S})$-state formulas φ and $\mathrm{CTL}^{*}(\mathcal{S})$-path formulas ψ by the following grammar, where $p \in \mathrm{P}, r \in \mathcal{S}, k=\operatorname{ar}(r)$, $i_{1}, \ldots, i_{k} \geq 0$, and $x_{1}, \ldots, x_{k} \in \mathrm{~V}$:

$$
\begin{aligned}
& \varphi::=p|\neg \varphi|(\varphi \wedge \varphi) \mid \mathrm{E} \psi \\
& \psi::=\varphi|\neg \psi|(\psi \wedge \psi)|\mathrm{X} \psi| \psi \mathrm{U} \psi \mid r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)
\end{aligned}
$$

A formula of the form $R:=r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ is also called an atomic constraint and we define $d(R)=\max \left\{i_{1}, \ldots, i_{k}\right\}$ (the depth of R). The syntactic difference between $\mathrm{CTL}^{*}(\mathcal{S})$ and ordinary CTL* lies in the presence of atomic constraints.

Formulas of $\mathrm{CTL}^{*}(\mathcal{S})$ are interpreted over triples $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$, where $\mathcal{A}=(A, I)$ is an \mathcal{S}-structure (also called the concrete domain), $\mathcal{K}=(D, \rightarrow, \rho)$ is a Kripke structure over P , and $\gamma: D \times \mathrm{V} \rightarrow A$ assigns to every $(v, x) \in D \times \mathrm{V}$ a value $\gamma(v, x)$ (the value of variable x at node v). We call such a triple $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ an \mathcal{A}-constraint graph. An \mathcal{A}-constraint graph $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ is an \mathcal{A}-constraint d-tree if \mathcal{K} is a Kripke d-tree.

We now define the semantics of $\operatorname{CTL}^{*}(\mathcal{S})$. For an \mathcal{A}-constraint graph $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ with $\mathcal{A}=(A, I)$ and $\mathcal{K}=(D, \rightarrow, \rho)$, a state $v \in D$, a \mathcal{K}-path π, a state formula φ, and a path formula ψ we write $(\mathcal{C}, v) \models \varphi$ if φ holds in (\mathcal{C}, v) and $(\mathcal{C}, \pi) \models \psi$ if ψ holds in (\mathcal{C}, π). This is inductively defined as follows (for the boolean connectives \neg and \wedge the definitions are as usual and we omit them):

- $(\mathcal{C}, v) \models p$ iff $p \in \rho(v)$.
- $(\mathcal{C}, v) \models \mathrm{E} \psi$ iff there is a \mathcal{K}-path π with $\pi(0)=v$ and $(\mathcal{C}, \pi) \models \psi$.
- $(\mathcal{C}, \pi) \models \varphi$ iff $(\mathcal{C}, \pi(0)) \models \varphi$.
$-(\mathcal{C}, \pi) \models \mathrm{X} \psi$ iff $\left(\mathcal{C}, \pi^{1}\right) \models \psi$.
- $(\mathcal{C}, \pi) \models \psi_{1} \cup \psi_{2}$ iff there exists $i \geq 0$ such that $\left(\mathcal{C}, \pi^{i}\right) \models \psi_{2}$ and for all $0 \leq j<i$ we have $\left(\mathcal{C}, \pi^{j}\right) \models \psi_{1}$.
$-(\mathcal{C}, \pi) \models r\left(\mathbf{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{n}} x_{n}\right) \operatorname{iff}\left(\gamma\left(\pi\left(i_{1}\right), x_{1}\right), \ldots, \gamma\left(\pi\left(i_{n}\right), x_{n}\right)\right) \in I(r)$.

Note that the role of the concrete domain \mathcal{A} and of the valuation function γ is restricted to the semantic of atomic constraints. CTL*-formulas are interpreted over Kripke structures, and to obtain their semantics it is sufficient to replace \mathcal{C} by \mathcal{K} in the rules above and to remove the last line.

We use the usual abbreviations: $\theta_{1} \vee \theta_{2}:=\neg\left(\neg \theta_{1} \wedge \neg \theta_{2}\right)$ (for both state and path formulas), $\mathrm{A} \psi:=\neg \mathrm{E} \neg \psi$ (universal path quantifier), $\psi_{1} \mathrm{R} \psi_{2}:=\neg\left(\neg \psi_{1} \mathrm{U} \neg \psi_{2}\right)$ (the release operator). Note that $(\mathcal{C}, \pi) \models \psi_{1} \mathrm{R} \psi_{2}$ iff $\left(\left(\mathcal{C}, \pi^{i}\right) \models \psi_{2}\right.$ for all $i \geq 0$ or there exists $i \geq 0$ such that $\left(\mathcal{C}, \pi^{i}\right) \models \psi_{1}$ and $\left(\mathcal{C}, \pi^{j}\right) \models \psi_{2}$ for all $\left.0 \leq j \leq i\right)$.

Using this extended set of operators we can put every formula into a semantically equivalent negation normal form, where \neg only occurs in front of atomic propositions or atomic constraints. Let $\#_{\mathrm{E}}(\theta)$ be the the number of different subformulas of the form $\mathrm{E} \psi$ in the $\mathrm{CTL}^{*}(\mathcal{S})$-formula θ. Then $\mathrm{CTL}^{*}(\mathcal{S})$ has the following tree model property:

Theorem 8 (cf. [9]). Let φ be a $\operatorname{CTL}^{*}(\mathcal{S})$-state formula in negation normal form and let $\mathcal{A}=(A, I)$ be an \mathcal{S}-structure. Then φ is \mathcal{A}-satisfiable if and only if there exists an \mathcal{A}-constraint $(\# \mathrm{E}(\varphi)+1)$-tree \mathcal{C} with $(\mathcal{C}, \varepsilon) \models \varphi$.

Note that for checking $(\mathcal{A}, \mathcal{K}, \gamma) \models \varphi$ we may ignore all propositions $p \in \mathrm{P}$ that do not occur in φ. Similarly, only those values $\gamma(u, x)$, where x is a variable that appears in φ, are relevant. Hence, if V_{φ} is the finite set of variables that occur in φ, then we can consider γ as a mapping from $D \times \mathrm{V}_{\varphi}$ to the domain of \mathcal{A}. Intuitively, we assign to each node $u \in D$ registers that store the values $\gamma(u, x)$ for $x \in \mathrm{~V}_{\varphi}$.

5 Satisfiability of constraint CTL* over a concrete domain

When we talk about satisfiability for $\operatorname{CTL}^{*}(\mathcal{S})$ our setting is as follows: We fix a concrete domain $\mathcal{A}=(A, I)$. Given a $\operatorname{CTL}^{*}(\mathcal{S})$-state formula φ, we say that φ is \mathcal{A} satisfiable if there is an \mathcal{A}-constraint graph $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ and a node v of \mathcal{K} such that $(\mathcal{C}, v) \models \varphi$. With $\operatorname{SATCTL}^{*}(\mathcal{A})$ we denote the following computational problem: Is a given state formula $\varphi \in \mathrm{CTL}^{*}(\mathcal{S}) \mathcal{A}$-satisfiable? The main result of this section is:

Theorem 9. Let \mathcal{A} be a negation-closed \mathcal{S}-structure, which moreover has the property $\mathrm{EHomDef}(\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$. Then the problem $\operatorname{SATCTL}^{*}(\mathcal{A})$ is decidable.

We say that a $\operatorname{CTL}^{*}(\mathcal{S})$-formula φ is in strong negation normal form if negations only occur in front of atomic propositions (i.e., φ is in negation normal form and there is no subformula $\neg R$ where R is an atomic constraint).

Let us fix a $\mathrm{CTL}^{*}(\mathcal{S})$-state formula φ in negation normal form and a negation-closed \mathcal{S}-structure \mathcal{A} for the rest of this section. We want to check whether φ is \mathcal{A}-satisfiable. First, we reduce to formulas in strong negation normal form:

Lemma 10. Let $\mathcal{A}=(A, I)$ be a negation-closed \mathcal{S}-structure. From a given $\mathrm{CTL}^{*}(\mathcal{S})$ state formula φ one can compute a $\mathrm{CTL}^{*}(\mathcal{S})$-state formula $\hat{\varphi}$ in strong negation normal form such that φ is \mathcal{A}-satisfiable iff $\hat{\varphi}$ is \mathcal{A}-satisfiable.

Proof. We can assume that φ is in negation normal form. Using induction, it suffices to eliminate a single negated atomic constraint $\theta=\neg r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ in φ, where $k=\operatorname{ar}(r)$. Let $d=\max \left\{i_{1}, \ldots, i_{k}\right\}$, which is the depth of the constraint $r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$. Since \mathcal{A} is negation-closed, we can compute a positive quantifierfree first-order formula $\psi\left(y_{1}, y_{2}, \ldots, y_{k}, z_{1}, z_{2}, \ldots, z_{m}\right)$ over the signature \mathcal{S} such that $\mathcal{A} \models \neg r\left(a_{1}, \ldots, a_{k}\right)$ if and only if $\mathcal{A} \models \exists z_{1} \cdots \exists z_{m} \psi\left(a_{1}, \ldots, a_{k}, z_{1}, \ldots, z_{m}\right)$. Let $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ be fresh variables not occurring in φ. We define the $\mathrm{CTL}^{*}(\mathcal{S})$-state formula φ^{\prime} by replacing in φ every occurrence of the negated constraint θ by the path formula

$$
\psi\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}, \mathrm{X}^{d} y_{1}^{\prime}, \ldots, \mathrm{X}^{d} y_{m}^{\prime}\right)
$$

So, we replace in $\psi\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{m}\right)$ every occurrence of a variable y_{p} (resp., z_{q}) by $\mathrm{X}^{i_{p}} x_{p}$ (resp., $\mathrm{X}^{d} y_{q}^{\prime}$).

We first prove that φ^{\prime} is \mathcal{A}-satisfiable if φ is \mathcal{A}-satisfiable. If φ is \mathcal{A}-satisfiable, then by Thm. 8 there is an \mathcal{A}-constraint t-tree $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ with $(\mathcal{C}, \varepsilon) \models \varphi$, where $\mathcal{K}=\left([1, t]^{*}, \rightarrow, \rho\right)$ and γ has domain $[1, t]^{*} \times \mathrm{V}_{\varphi}$ for V_{φ} the set of variables of φ. By choice of the fresh variables, we have $\mathrm{V}_{\varphi} \cap\left\{y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right\}=\emptyset$. Now we extend γ to $\gamma^{\prime}:[1, t]^{*} \times\left(\mathrm{V}_{\varphi} \cup\left\{y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right\}\right) \rightarrow A$ as follows: Consider $w, v \in[1, t]^{*}$ such that $|v|=d$ and let π be a path in the tree $\left([1, t]^{*}, \rightarrow\right)$ starting at w and passing $w v$, i.e., $\pi(0)=w$ and $\pi(d)=w v$. Let $v_{p}=v\left[: i_{p}\right]$ for $1 \leq p \leq k$.

- If $(\mathcal{K}, \pi) \models \theta=\neg r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$ then there are values $a_{1}, \ldots, a_{m} \in A$ such that $\mathcal{A} \models \psi\left(\gamma\left(w v_{1}, x_{1}\right), \ldots, \gamma\left(w v_{k}, x_{k}\right), a_{1}, \ldots, a_{m}\right)$. Note that the choice of a_{1}, \ldots, a_{m} can be made independent of the concrete choice of π but only depending on γ and $w v$. Thus, it is well-defined to set $\gamma^{\prime}\left(w v, y_{q}^{\prime}\right)=a_{q}$ for all $1 \leq q \leq m$.
- If $(\mathcal{K}, \pi) \models r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$, then we choose $\gamma^{\prime}\left(w v, y_{q}^{\prime}\right) \in A$ arbitrarily.

Finally, for all w such that $|w|<d$ we choose $\gamma^{\prime}\left(w, y_{q}^{\prime}\right) \in A$ arbitrarily.
By induction on the structure of φ we prove that for $\mathcal{C}^{\prime}=\left(\mathcal{A}, \mathcal{K}, \gamma^{\prime}\right)$ we have $\left(\mathcal{C}^{\prime}, \varepsilon\right) \models \varphi^{\prime}$. All steps are trivial except for the case that the subformula is $\theta=$ $\neg r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots \mathrm{X}^{i_{k}} x_{k}\right)$. In this case we assume that $(\mathcal{C}, \pi) \models \theta$ for a path π, and we have to show that

$$
\left(\mathcal{C}^{\prime}, \pi\right) \models \theta^{\prime}=\psi\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}, \mathrm{X}^{d} y_{1}^{\prime}, \ldots, \mathrm{X}^{d} y_{m}^{\prime}\right)
$$

By definition $\pi(d)=w v$ for some word $w=\pi(0)$ and some word v such that $|v|=d$. Let $v_{p}=v\left[\right.$: $\left.i_{p}\right]$ for $1 \leq p \leq k$. Since $(\mathcal{C}, \pi) \models \neg r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)$, we conclude immediately that

$$
\left.\mathcal{A} \models \psi\left(\gamma\left(w v_{1}, x_{1}\right), \ldots, \gamma\left(w v_{k}\right), x_{k}\right), \gamma^{\prime}\left(w v, y_{1}^{\prime}\right), \ldots, \gamma^{\prime}\left(w v, y_{m}^{\prime}\right)\right) .
$$

Noting that $w(v[: d])=w v$ we immediately conclude that $\left(\mathcal{C}^{\prime}, \pi\right) \models \theta^{\prime}$ which concludes the first direction.

In order to prove that φ is \mathcal{A}-satisfiable if φ^{\prime} is \mathcal{A}-satisfiable, let us assume (using again Thm. 8) that $\mathcal{C}^{\prime}=\left(\mathcal{A}, \mathcal{K}, \gamma^{\prime}\right)$ is an \mathcal{A}-constraint t-tree such that $\left(\mathcal{C}^{\prime}, \varepsilon\right) \models \varphi^{\prime}$. Let \mathcal{C} be the \mathcal{A}-constraint t-tree obtained from \mathcal{C}^{\prime} by restricting γ^{\prime} to the variables from V_{φ}. Again by induction on the structure of φ, we end up with the task to show that if $\left(\mathcal{C}^{\prime}, \pi\right) \models \theta^{\prime}$ for a path π, then $(\mathcal{C}, \pi) \models \theta$. If

$$
\left(\mathcal{C}^{\prime}, \pi\right) \models \theta^{\prime}=\psi\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}, \mathrm{X}^{d} y_{1}^{\prime}, \ldots, \mathrm{X}^{d} y_{m}^{\prime}\right)
$$

Fig. 1. The $(\mathbb{N},<,=)$-constraint 2-tree \mathcal{C} from Ex. 11 the Kripke 2-tree $\mathcal{T}=\mathcal{C}^{a}$, and the structure $\mathcal{G}_{\mathcal{T}}$.
then there are values (namely, $\gamma^{\prime}\left(\pi(d), y_{1}^{\prime}\right), \ldots, \gamma^{\prime}\left(\pi(d), y_{m}^{\prime}\right)$) witnessing

$$
\mathcal{A} \models \exists z_{1} \cdots \exists z_{m} \psi\left(\gamma\left(\pi\left(i_{1}\right), x_{1}\right), \ldots, \gamma\left(\pi\left(i_{k}\right), x_{k}\right), z_{1}, \ldots, z_{m}\right) .
$$

By choice of ψ this implies that $\mathcal{A} \models \neg r\left(\gamma\left(\pi\left(i_{1}\right), x_{1}\right), \ldots, \gamma\left(\pi\left(i_{k}\right), x_{k}\right)\right)$. Hence, we have $(\mathcal{C}, \pi) \models \neg r\left(\mathrm{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{k}} x_{k}\right)=\theta$.

From now on let us assume that φ is in strong negation normal form. Let $d=\#_{\mathrm{E}}(\varphi)+1$. Let R_{1}, \ldots, R_{n} be a list of all atomic constraints that are subformulas of φ, and let V_{φ} be the finite set of variables that occur in φ. Let us fix new propositions p_{1}, \ldots, p_{n} (one for each R_{i}) that do not occur in φ. Let $d_{i}=d\left(R_{i}\right)$ be the depth of the constraint R_{i}. We denote with φ^{a} the (ordinary) CTL*-formula obtained from φ by replacing every occurrence of a constraint R_{i} by $\mathrm{X}^{d_{i}} p_{i}$. Given an \mathcal{A}-constraint d-tree $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$, where $\mathcal{K}=\left([1, d]^{*}, \rightarrow, \rho\right)$ and $\rho(v) \cap\left\{p_{1}, \ldots, p_{n}\right\}=\emptyset$ for all $v \in[1, d]^{*}$, we define a Kripke d-tree $\mathcal{C}^{a}=\left([1, d]^{*}, \rightarrow, \rho^{a}\right)$, where $\rho^{a}(v)$ contains

- all propositions from $\rho(v)$ and
- all propositions $p_{i}(1 \leq i \leq n)$ such that the following holds, where we assume that R_{i} has the form $r\left(\mathrm{X}^{j_{1}} x_{1}, \ldots, \mathrm{X}^{j_{k}} x_{k}\right)$ with $k=\operatorname{ar}(r)$ (hence, $d_{i}=$ $\max \left\{j_{1}, \ldots, j_{k}\right\}$):
- $v=s u$ with $|u|=d_{i}$
- $\left(\gamma\left(s u_{1}, x_{1}\right), \ldots, \gamma\left(s u_{k}, x_{k}\right)\right) \in I(r)$, where $u_{l}=u\left[: j_{l}\right]$ for $1 \leq l \leq k$.

Hence, the fact that proposition p_{i} labels node $s u$ with $|u|=d_{i}$ means that the constraint R_{i} holds along every path that starts in node s and descends in the tree down via node su. The superscript " a " in \mathcal{C}^{a} stands for "abstracted" since we abstract from the concrete constraints and replace them by new propositions.

Moreover, given a Kripke d-tree $\mathcal{T}=\left([1, d]^{*}, \rightarrow, \rho\right.$) (where the new propositions p_{1}, \ldots, p_{n} are allowed to occur in $\left.\mathcal{T}\right)$ we define a countable \mathcal{S}-structure $\mathcal{G}_{\mathcal{T}}=\left([1, d]^{*} \times\right.$ $\left.\mathrm{V}_{\varphi}, J\right)$ as follows: The interpretation $J(r)$ of the relation symbol $r \in \mathcal{S}$ contains all k tuples (where $k=\operatorname{ar}(r))\left(\left(s u_{1}, x_{1}\right), \ldots,\left(s u_{k}, x_{k}\right)\right)$ for which there exist $1 \leq i \leq n$ and $u \in[1, d]^{*}$ with $|u|=d_{i}$ such that $p_{i} \in \rho(s u), R_{i}=r\left(\mathbf{X}^{j_{1}} x_{1}, \ldots, \mathbf{X}^{j_{k}} x_{k}\right)$, and $u_{t}=u\left[: j_{t}\right]$ for $1 \leq t \leq k$.

Example 11. Figure 1 shows an example, where we assume that $d=2$ and $n=2$, $R_{1}=\left[<\left(x_{1}, \mathrm{X} x_{2}\right)\right]$, and $R_{2}=\left[=\left(\mathrm{X} x_{1}, \mathrm{X} x_{2}\right)\right]$. The figure shows an initial part of an $(\mathbb{N},<,=)$-constraint 2 -tree $\mathcal{C}=((\mathbb{N},<,=), \mathcal{K}, \gamma)$. The edges of the Kripke 2 -tree \mathcal{K} are dotted. We assume that \mathcal{K} is defined over the empty set of propositions. The node to the left (resp., right) of a tree node u is labeled by the value $\gamma\left(u, x_{1}\right)$ (resp. $\gamma\left(u, x_{2}\right)$). The figure shows the labeling of tree nodes with the two new propositions p_{1} and p_{2} (corresponding to R_{1} and R_{2}) as well as the $\{<,=\}$-structure $\mathcal{G}_{\mathcal{T}}$ for $\mathcal{T}=\mathcal{C}^{a}$.

Lemma 12. Let φ be a $\mathrm{CTL}^{*}(\mathcal{S})$-state formula in strong negation normal form. The formula φ is \mathcal{A}-satisfiable if and only if there exists a $\operatorname{Kripke}\left(\#_{\mathrm{E}}(\varphi)+1\right)$-tree \mathcal{T} such that $(\mathcal{T}, \varepsilon) \models \varphi^{a}$ and $\mathcal{G}_{\mathcal{T}} \preceq \mathcal{A}$.

Proof. Let us first assume that φ is \mathcal{A}-satisfiable and let $\mathcal{C}=(\mathcal{A}, \mathcal{K}, \gamma)$ be an \mathcal{A} constraint graph with $\mathcal{A}=(A, I)$ and v a node of \mathcal{K} such that $(\mathcal{C}, v) \models \varphi$. By Thm. 8 we can assume that $\mathcal{K}=\left([1, d]^{*}, \rightarrow, \rho\right)$ is a Kripke d-tree with $d=e+1$ and $v=\varepsilon$. Let m, n, R_{i} and $d_{i}(1 \leq i \leq n)$ have the same meaning as above. Take the Kripke d-tree $\mathcal{T}=\mathcal{C}^{a}=\left([1, d]^{*}, \rightarrow, \rho^{a}\right)$. We claim that $\gamma:[1, d]^{*} \times \mathrm{V}_{\varphi} \rightarrow A$ is a homomorphism from $\mathcal{G}_{\mathcal{T}}$ to \mathcal{A}. For this, assume that $\left(\left(s u_{1}, x_{1}\right), \ldots,\left(s u_{k}, x_{k}\right)\right)$ belongs to the interpretation of r in $\mathcal{G}_{\mathcal{T}}$. Hence, there exist $1 \leq i \leq n$ and $u \in[1, d]^{*}$ with $|u|=d_{i}$ such that $p_{i} \in \rho^{a}(s u), R_{i}=r\left(\mathbf{X}^{j_{1}} x_{1}, \ldots, \mathrm{X}^{j_{k}} x_{k}\right)$, and $u_{q}=u\left[: j_{q}\right]$ for $1 \leq q \leq k$. Since $\mathcal{T}=\mathcal{C}^{a}$ and $p_{i} \in \rho^{a}(s u)$, it follows that the tuple $\left(\gamma\left(s u_{1}, x_{1}\right), \ldots, \gamma\left(s u_{k}, x_{k}\right)\right)$ belongs to the interpretation of r in \mathcal{A}. Hence, γ is indeed a homomorphism.

In order to show $(\mathcal{T}, \varepsilon) \models \varphi^{a}$ we prove by induction on the structure of formulas the following implication, where ψ is a state or path subformula of $\varphi, v \in[1, d]^{*}$ is a node and π is a \mathcal{K}-path (and hence also a \mathcal{T}-path): If $(\mathcal{C}, v) \models \psi$, then $(\mathcal{T}, v) \models \psi^{a}$, and if $(\mathcal{C}, \pi) \models \psi$ then $(\mathcal{T}, \pi) \models \psi^{a}$.

- $\psi=p \in P$: We have $\psi^{a}=p$. If v is such that $(\mathcal{C}, v) \models p$, we have $p \in \rho(v)$ and, since $\rho(v) \subseteq \rho^{a}(v),(\mathcal{T}, v) \models p$. If π is a path such that $(\mathcal{C}, \pi) \models p$, then $(\mathcal{C}, \pi(0)) \models p$. Using what we have just proven, $(\mathcal{T}, \pi(0)) \models p$ and thus $(\mathcal{T}, \pi) \models$ p.
- $\psi=\neg p$ with $p \in P$ (recall that negations only occurs in front of atomic propositions): We have $\psi^{a}=\neg p$: If v is such that $(\mathcal{C}, v) \models \neg p$, we have $p \notin \rho(v)$. Note that $p \notin\left\{p_{1}, \ldots, p_{n}\right\}$. Since $\rho(v)=\rho^{a} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ we have $p \notin \rho^{a}(v)$. Hence, $(\mathcal{T}, v) \models \neg p$. For a path π with $(\mathcal{C}, \pi) \models \neg p$ we can argue in the same way.
$-\psi=R_{i}$ for some $1 \leq i \leq n$: Suppose that $R_{i}=r\left(\mathrm{X}^{j_{1}} y_{1}, \ldots, \mathrm{X}^{j_{k}} y_{k}\right)$ where $d_{i}=\max \left\{j_{1}, \ldots, j_{k}\right\}$ is the depth of R_{i}. We have $\psi^{a}=\mathrm{X}^{d_{i}} p_{i}$. Let π be a path such that $(\mathcal{C}, \pi) \models R_{i}$. By definition $\left(\gamma\left(\pi\left(j_{1}\right), y_{1}\right), \ldots, \gamma\left(\pi\left(j_{k}\right), y_{k}\right)\right) \in I(r)$ and therefore $p_{i} \in \rho^{a}\left(\pi\left(d_{i}\right)\right)$. This means that $\left(\mathcal{T}, \pi^{d_{i}}\right) \models p_{i}$ and consequently that $(\mathcal{T}, \pi) \models \mathrm{X}^{d_{i}} p_{i}$.
$-\psi=\psi_{1} \circ \psi_{2}$ for $\circ \in\{\wedge, \vee\}$ and state or path formulas ψ_{1} and ψ : Then we have $\psi^{a}=\varphi_{1}^{a} \circ \varphi_{2}^{a}$, and we can directly argue by induction.
$-\psi=\mathrm{E} \varphi$: We have $\psi^{a}=\mathrm{E} \varphi^{a}$. If $(\mathcal{C}, v) \models \mathrm{E} \varphi$ then there must be a path π with $\pi(0)=v$ and $(\mathcal{C}, \pi) \models \varphi$. By induction, we have $(\mathcal{T}, \pi) \models \varphi^{a}$ and therefore $(\mathcal{T}, v) \models \mathrm{E} \varphi^{a}$. The case $\psi=\mathrm{A} \varphi$ is treated similarly. Moreover, the case that $\mathrm{E} \varphi$ or $\mathrm{A} \varphi$ is interpreted as a path formula directly reduces to the case of a state formula.
- $\psi=\mathrm{X} \varphi$: We have $\psi^{a}=\mathrm{X}^{a}$. Let π be a path such that $(\mathcal{C}, \pi) \models \mathrm{X} \varphi$. Then $\left(\mathcal{C}, \pi^{1}\right) \models \varphi$. By induction, $\left(\mathcal{T}, \pi^{1}\right) \models \varphi^{a}$ and hence $(\mathcal{T}, \pi) \models \mathrm{X} \varphi^{a}$.
- $\psi=\varphi_{1} \mathrm{U} \varphi_{2}$: We have $\psi^{a}=\varphi_{1}^{a} \mathrm{U} \varphi_{2}^{a}$. Let π be a path such that $(\mathcal{C}, \pi) \models \varphi_{1} \mathrm{U} \varphi_{2}$. Then there exists $i \geq 0$ such that $\left(\mathcal{C}, \pi^{i}\right) \models \varphi_{2}$ and $\left(\mathcal{C}, \pi^{j}\right) \models \varphi_{1}$ for all $0 \leq j<i$. By induction we obtain $\left(\mathcal{T}, \pi^{i}\right) \models \varphi_{2}^{a}$ and $\left(\mathcal{T}, \pi^{j}\right) \models \varphi_{1}^{a}$ for all $0 \leq j<i$. From this we get $(\mathcal{T}, \pi) \models \varphi_{1}^{a} \cup \varphi_{2}^{a}$.
- $\psi=\varphi_{1} \mathrm{R} \varphi_{2}$: We have $\psi^{a}=\varphi_{1}^{a} \mathrm{R} \varphi_{2}^{a}$. Let π be a path such that $(\mathcal{C}, \pi) \models \varphi_{1} \mathrm{R} \varphi_{2}$. This means that $\left(\mathcal{C}, \pi^{i}\right) \models \varphi_{2}$ for all $i \geq 0$, or there exists $i \geq 0$ such that $\left(\mathcal{C}, \pi^{i}\right) \models$ φ_{1} and $\left(\mathcal{C}, \pi^{j}\right) \models \varphi_{2}$ for all $0 \leq j \leq i$. Again, using induction, we get: $\left(\mathcal{T}, \pi^{i}\right) \models$ φ_{2}^{a} for all $i \geq 0$, or there exists $i \geq 0$ such that $\left(\mathcal{T}, \pi^{i}\right) \models \varphi_{1}^{a}$ and $\left(\mathcal{T}, \pi^{j}\right) \models \varphi_{2}^{a}$ for all $0 \leq j \leq i$. But this means that $(\mathcal{T}, \pi) \models \varphi_{1}^{a} \mathrm{R} \varphi_{2}^{a}$.

This concludes the proof of the "only if" direction from the lemma. For the other direction, assume that there exists a Kripke d-tree $\mathcal{T}=\left([1, d]^{*}, \rightarrow, \rho_{\mathcal{T}}\right)$ such that $(\mathcal{T}, \varepsilon) \models \varphi^{a}$ and there exists a homomorphism h from $\mathcal{G}_{\mathcal{T}}$ to \mathcal{A}. Define the \mathcal{A}-constraint graph $\mathcal{C}=(\mathcal{A}, \mathcal{K}, h)$, where $\mathcal{K}=\left([1, d]^{*}, \rightarrow, \rho\right)$ with $\rho(v)=\rho_{\mathcal{T}}(v) \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ for all $v \in[1, d]^{*}$. We claim that $(\mathcal{C}, \varepsilon) \models \varphi$.

Again, we can prove by induction that for all (state or path) subformulas ψ of φ, for all $v \in[1, d]^{*}$, and for all \mathcal{T}-paths π, if $(\mathcal{T}, v) \models \psi^{a}$ then $(\mathcal{C}, v) \models \psi$, and if $(\mathcal{T}, \pi) \models \psi^{a}$ then $(\mathcal{C}, \pi) \models \psi$. The only nontrivial part is the case that ψ is one of the atomic constraints $R_{i}=r\left(X^{j_{1}} x_{1}, \ldots, X^{j_{k}} x_{k}\right)$, where $k=\operatorname{ar}(r)$. This means that $\psi^{a}=X^{d_{i}} p_{i}$, where $d_{i}=\max \left\{j_{1}, \ldots, j_{k}\right\}$ is the depth of R_{i}. If π is such that $(\mathcal{T}, \pi) \models \psi^{a}$, this means that $p_{i} \in \rho_{\mathcal{T}}\left(\pi\left(d_{i}\right)\right)$. Then, according to the definition of $\mathcal{G}_{\mathcal{T}}$, the interpretation of r in $\mathcal{G}_{\mathcal{T}}$ contains the k-tuple $\left(\left(\pi\left(j_{1}\right), x_{1}\right), \ldots,\left(\pi\left(j_{k}\right), x_{k}\right)\right)$. Since h is a homomorphism from $\mathcal{G}_{\mathcal{T}}$ to \mathcal{A}, we have $\left(h\left(\pi\left(j_{1}\right), x_{1}\right), \ldots, h\left(\pi\left(j_{k}\right), x_{k}\right)\right) \in I(r)$. By definition of \mathcal{C} this means that $(\mathcal{C}, \pi) \models r\left(X^{j_{1}} x_{1}, \ldots, X^{j_{k}} x_{k}\right)$.

Let $\theta=\varphi^{a}$ for the further discussion. Hence, θ is an ordinary CTL* -state formula, where negations only occur in front of propositions from $\mathrm{P} \backslash\left\{p_{1}, \ldots, p_{m}\right\}$, and $d=$ $\#_{\mathrm{E}}(\theta)+1$. By Lemma 12, we have to check, whether there exists a Kripke d-tree \mathcal{T} such that $(\mathcal{T}, \varepsilon) \models \theta$ and $\mathcal{G}_{\mathcal{T}} \preceq \mathcal{A}$.

Let $\sigma \subseteq \mathcal{S}$ be the finite subsignature consisting of all predicate symbols that occur in our initial $\operatorname{CTL}^{*}(\mathcal{S})$-formula φ. Note that $\mathcal{G}_{\mathcal{T}}$ is actually a σ-structure. Since the concrete domain \mathcal{A} has the property $\operatorname{EHomDef}(\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$, one can compute from σ a Bool(MSO, WMSO +B)-formula α such that for every countable σ-structure \mathcal{B} we have $\mathcal{B} \models \alpha$ if and only if $\mathcal{B} \preceq \mathcal{A}$. Hence, our new goal is to decide, whether there exists a Kripke d-tree \mathcal{T} such that $(\mathcal{T}, \varepsilon) \models \theta$ and $\mathcal{G}_{\mathcal{T}} \models \alpha$ (note that $\mathcal{G}_{\mathcal{T}}$ is countable). It is well known that every CTL*-state formula can be effectively transformed into an equivalent MSO-formula with a single free first-order variable. Since the $\operatorname{root} \varepsilon$ of a tree is first-order definable, we get an MSO-sentence ψ such that $(\mathcal{T}, \varepsilon) \models \theta$ if and only if $\mathcal{T} \models \psi$. Hence, we have to check whether there exists a Kripke d-tree \mathcal{T} such that $\mathcal{T} \models \psi$ and $\mathcal{G}_{\mathcal{T}} \models \alpha$. If we can translate the $\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$-formula α back into a Bool(MSO, WMSO +B)-formula α^{\prime} such that $\left(\mathcal{G}_{\mathcal{T}} \models \alpha \Leftrightarrow \mathcal{T} \models \alpha^{\prime}\right)$, then we can finish the proof.

Recall the construction of $\mathcal{\mathcal { G } _ { \mathcal { T } }}$: For every node $v \in D$ of $\mathcal{T}=(D, \rightarrow, \rho)$ we introduce $m:=\left|\mathrm{V}_{\varphi}\right|$ copies (v, x) for $x \in \mathrm{~V}_{\varphi}$. The \mathcal{S}-relations between these nodes
are determined by the propositions p_{1}, \ldots, p_{n} : The interpretation of $r \in \mathcal{S}$ contains all k-tuples $(k=\operatorname{ar}(r))\left(\left(s u_{1}, y_{1}\right), \ldots,\left(s u_{k}, y_{k}\right)\right)$ for which there exist $1 \leq i \leq n$ and $u \in[1, d]^{*}$ with $|u|=d_{i}, p_{i} \in \rho(s u), R_{i}=r\left(\mathrm{X}^{j_{1}} y_{1}, \ldots, \mathrm{X}^{j_{k}} y_{k}\right)$, and $u_{t}=u\left[: j_{t}\right]$ for $1 \leq t \leq k$. This is a particular case of an MSO-transduction [6] with copy number m. It is therefore possible to compute from a given MSO-sentence η over the signature \mathcal{S} an MSO-sentence η^{\prime} such that $\mathcal{G}_{\mathcal{T}} \models \eta \Leftrightarrow \mathcal{T} \models \eta^{\prime}$. But the problem is that in our situation η is the $\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$-formula α, and it is not clear whether MSO-transductions (or even first-order interpretations) are compatible with the logic $\mathrm{WMSO}+\mathrm{B}$. Nevertheless, there is a simple solution. Let $\mathrm{V}_{\varphi}=\left\{x_{1}, \ldots, x_{m}\right\}$. From a Kripke d-tree $\mathcal{T}=\left([1, d]^{*}, \rightarrow, \rho\right)$ we build an extended $(d+m)$-Kripke tree $\mathcal{T}^{e}=\left([1, d+m]^{*}, \rightarrow, \rho^{e}\right)$ as follows: Let us fix new propositions q_{1}, \ldots, q_{m} (one for each variable x_{i}) that do not occur in the MSO-sentence ψ and such that $\rho(v) \cap$ $\left\{q_{1}, \ldots, q_{m}\right\}=\emptyset$ for all $v \in[1, d]^{*}$. We define the new labeling function ρ^{e} as follows:

$$
\begin{aligned}
\rho^{e}(v) & =\rho(v) \text { for } v \in[1, d]^{*} \\
\rho^{e}(v i) & =\left\{q_{i-d}\right\} \text { for } v \in[1, d]^{*}, d+1 \leq i \leq d+m \\
\rho^{e}(v i u) & =\emptyset \text { for } v \in[1, d]^{*}, d+1 \leq i \leq d+m, u \in[1, d+m]^{+}
\end{aligned}
$$

It is easy to write down an MSO-sentence β such that for every $(d+m)$-Kripke tree \mathcal{T}^{\prime} we have $\mathcal{T}^{\prime} \models \beta$ if and only if $\mathcal{T}^{\prime} \cong \mathcal{T}^{e}$ for some Kripke d-tree \mathcal{T}. Moreover, since the old Kripke d-tree \mathcal{T} is MSO-definable within \mathcal{T}^{e}, we can construct from the MSO-sentence ψ a new MSO-sentence ψ^{e} such that $\mathcal{T} \models \psi$ if and only if $\mathcal{T}^{e} \models \psi^{e}$. Finally, let $q(x)=\bigvee_{i=1}^{m} q_{i}(x)$. Then, the nodes of $\mathcal{G}_{\mathcal{T}}$ are in a natural bijection with the nodes of \mathcal{T}^{e} that satisfy $q(x)$: If $\mathcal{T}^{e} \models q(u)$ for $u \in[1, d+m]^{*}$, then there is a unique $i \in[1, m]$ such that $\mathcal{T}^{e} \models q_{i}(u)$ and $u=v(i+d)$. Then we associate the node u with node $\left(v, x_{i}\right)$ of $\mathcal{G}_{\mathcal{T}}$. By relativizing all quantifiers in the $\mathrm{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})-$ formula α to $q(x)$, we can construct a Bool(MSO, WMSO + B)-formula α^{e} such that $\mathcal{G}_{\mathcal{T}} \models \alpha$ if and only if $\mathcal{T}^{e} \models \alpha^{e}$.

It follows that there is a Kripke d-tree \mathcal{T} such that $\mathcal{T} \models \psi$ and $\mathcal{G}_{\mathcal{T}} \models \alpha$ if and only if there is a Kripke $(d+m)$-tree \mathcal{T}^{\prime} such that $\mathcal{T}^{\prime} \models\left(\beta \wedge \psi^{e} \wedge \alpha^{e}\right)$. Since $\beta \wedge \psi^{e} \wedge \alpha^{e}$ is a $\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$-formula, the latter is decidable by Thm. 3 .

6 Concrete domains over the integers

The main technical result of this section is:
Proposition 13. Z from (11) has the property $\mathrm{EHomDef}(\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$.
Since \mathcal{Z} is negation-closed (see Ex. (1) our main result follows by Thm. 9 .
Theorem 14. SATCTL* $^{*}(\mathcal{Z})$ is decidable.
We prove Prop. 13 in three steps. First, we show that the structure $(\mathbb{Z},<)$ has the property $\operatorname{EHomDef}(\mathrm{WMSO}+\mathrm{B})$. Then we extend this result to the structure $(\mathbb{Z},<,=)$ and, finally, to the full structure \mathcal{Z}.

As a preparation of the proof, we first define some terminology and then we characterize structures that allow homomorphisms to $(\mathbb{Z},<)$ in terms of their paths. Let
$\mathcal{A}=(A, I)$ be a countable $\{<\}$-structure. We identify \mathcal{A} with the directed graph (A, E) where $E=I(<)$. When talking about paths, we always refer to finite directed E-paths. The length of a path $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ (i.e., $\left(a_{i-1}, a_{i}\right) \in E$ for $\left.1 \leq i \leq n\right)$ is n. For $S \subseteq A$ and $x \in A \backslash S$, a path from x to S is a path from x to some node $y \in S$. A path from S to x is defined in a symmetric way.

Lemma 15. We have $\mathcal{A} \preceq(\mathbb{Z},<)$ if and only if
(H1) \mathcal{A} does not contain cycles, and
(H2) for all $a, b \in A$ there is $c \in \mathbb{N}$ such that the length of all paths from a to b is bounded by c.

Proof. Let us first show the "only if" direction of the lemma. Suppose h is a homomorphism from \mathcal{A} to $(\mathbb{Z},<)$. The presence of a cycle $\left(a_{0}, \ldots a_{k-1}\right)$ in $\mathcal{A}(k \geq 1$, $\left(a_{i}, a_{i+1 \bmod k}\right) \in E$ for $\left.0 \leq i \leq k-1\right)$ would imply the existence of integers $z_{0}, \ldots z_{k-1}$ with $z_{i}<z_{i+1 \bmod k}$ for $0 \leq i \leq k-1$ (where $z_{i}=h\left(a_{i}\right)$), which is not possible. Hence, (H1) holds.

Suppose now that $a, b \in A$ are such that for every n there is a path of length at least n from a to b. If $d=h(b)-h(a)$, we can find a path $\left(a_{0}, a_{1} \ldots, a_{k}\right)$ with $a_{0}=$ $a, a_{k}=b$ and $k>d$. Since h is a homomorphism, this path will be mapped to an increasing sequence of integers $h(a)=h\left(a_{0}\right)<h\left(a_{1}\right)<\cdots<h\left(a_{k}\right)=h(b)$. But this contradicts $h(b)-h(a)=d<k$. Hence, (H2) holds.

For the "if" direction of the lemma assume that \mathcal{A} is acyclic (property (H1)) and that (H2) holds. Fix an enumeration $a_{0}, a_{1}, a_{2}, \ldots$ of the countable set A. For $n \geq 0$ let $S_{n}:=\left\{a \in A \mid \exists i, j \leq n:\left(a_{i}, a\right),\left(a, a_{j}\right) \in E^{*}\right\}$, which has the following properties:
(P1) S_{n} is convex w.r.t. the partial order E^{*} : If $a, c \in S_{n}$ and $(a, b),(b, c) \in E^{*}$, then $b \in S_{n}$.
(P2) For $a \in A \backslash S_{n}$ all paths between a and S_{n} are "one-way", i.e., there do not exist $b, c \in S_{n}$ such that $(b, a),(a, c) \in E^{*}$. This follows from (F1).
(P3) For all $a \in A \backslash S_{n}$ there exists a bound $c \in \mathbb{N}$ such that all paths between a and S_{n} have length at most c. Let $c_{n}^{a} \in \mathbb{N}$ be the smallest such bound (hence, we have $c_{n}^{a}=0$ if there do not exist paths between a and S_{n}).

To see ($\mathrm{F}[3]$, assume that there only exist paths from S_{n} to a but not the other way round (see (P 2 Z); the other case is symmetric. If there is no bound on the length of paths from S_{n} to a, then by definition of S_{n}, there is no bound on the length of paths from $\left\{a_{0}, \ldots, a_{n}\right\}$ to a. By the pigeon principle, there exists $0 \leq i \leq n$ such that there is no bound on the length of paths from a_{i} to a. But this contradicts property (H2).

We build our homomorphism h inductively. For every $n \geq 0$ we define functions $h_{n}: S_{n} \rightarrow \mathbb{Z}$ such that the following invariants hold for all $n \geq 0$.
(I1) If $n>0$ then $h_{n}(a)=h_{n-1}(a)$ for all $a \in S_{n-1}$
(I2) $h_{n}\left(S_{n}\right)$ is bounded in \mathbb{Z}, i.e., there exist $z_{1}, z_{2} \in \mathbb{Z}$ such that $h_{n}\left(S_{n}\right) \subseteq\left[z_{1}, z_{2}\right]$.
(I3) h_{n} is a homomorphism from the subgraph $\left(S_{n}, E \cap\left(S_{n} \times S_{n}\right)\right)$ to $(\mathbb{Z},<)$.
For $n=0$ we have $S_{0}=\left\{a_{0}\right\}$. We set $h_{0}\left(a_{0}\right)=0$ (any other integer would be also fine). Properties (11)-(3) are easily verified. For $n>0$, there are four cases.

Case 1. $a_{n} \in S_{n-1}$, thus $S_{n}=S_{n-1}$. We set $h_{n}=h_{n-1}$. Clearly, (1])-([3) hold for n.
Case 2. $a_{n} \notin S_{n-1}$ and there is no path from a_{n} to S_{n-1} or vice versa. We set $h_{n}\left(a_{n}\right):=0$ (and $S_{n}=S_{n-1} \cup\left\{a_{n}\right\}$). In this case (1)-(1) follow easily from the induction hypothesis.

Case 3. $a_{n} \notin S_{n-1}$ and there exist paths from a_{n} to S_{n-1}. Then, by (F 2) there do not exist paths from S_{n-1} to a_{n}. Hence, we have

$$
S_{n}=S_{n-1} \cup\left\{a \in A \mid \exists b \in S_{n-1}:\left(a_{n}, a\right),(a, b) \in E^{*}\right\}
$$

We have to assign a value $h_{n}(a)$ for all $a \in A \backslash S_{n-1}$ that lie along a path from a_{n} to S_{n-1}. By ([|2) there exist $z_{1}, z_{2} \in \mathbb{Z}$ with $h_{n-1}\left(S_{n-1}\right) \subseteq\left[z_{1}, z_{2}\right]$. Recall the definition of c_{n-1}^{a} from (P 3). For all $a \in A \backslash S_{n-1}$ that lie on a path from a_{n} to S_{n-1}, we set $h_{n}(a):=z_{1}-c_{n-1}^{a}$. Since there are paths from a to S_{n-1}, we have $c_{n-1}^{a}>0$. Hence, for all $a \in S_{n} \backslash S_{n-1}, h_{n}(a)<z_{1}$. Let us check that $h_{n}: S_{n} \rightarrow \mathbb{Z}$ satisfy (1)- ([3): Invariant (1]) holds by definition of h_{n}. For (2) note that $h_{n}\left(S_{n}\right) \subseteq\left[z_{1}-c_{n-1}^{a_{n}}, z_{2}\right]$.

It remains to show ([3], i.e., that h_{n} is a homomorphism from $\left(S_{n}, E \cap\left(S_{n} \times S_{n}\right)\right)$ to $(\mathbb{Z},<)$. Hence, we have to show that $h\left(b_{1}\right)<h\left(b_{2}\right)$ for all $\left(b_{1}, b_{2}\right) \in E \cap\left(S_{n} \times S_{n}\right)$.

- If $b_{1}, b_{2} \in S_{n-1}$, then $h_{n}\left(b_{1}\right)=h_{n-1}\left(b_{1}\right)<h_{n-1}\left(b_{2}\right)=h_{n}\left(b_{2}\right)$ by induction hypothesis.
- If $b_{1} \in S_{n} \backslash S_{n-1}$ and $b_{2} \in S_{n-1}$, we know that $h_{n}\left(b_{2}\right)=h_{n-1}\left(b_{2}\right) \geq z_{1}$ while $h_{n}\left(b_{1}\right)<z_{1}$ by construction. This directly implies $h_{n}\left(b_{1}\right)<h_{n}\left(b_{2}\right)$.
- If $b_{2} \in S_{n} \backslash S_{n-1}$ and $b_{1} \in S_{n-1}$, then $\left(b_{1}, b_{2}\right) \in E$ and by assumption b_{2} must be on a path from a_{n} to S_{n-1} which contradicts ($\mathrm{P}[2$).
- If both b_{1} and b_{2} belong to $S_{n} \backslash S_{n-1}$ then $h_{n}\left(b_{i}\right):=z_{1}-c_{n-1}^{b_{i}}$ for $i \in\{1,2\}$ Since $\left(b_{1}, b_{2}\right) \in E$, we have $c_{n-1}^{b_{1}}>c_{n-1}^{b_{2}}$. This implies $h_{n}\left(b_{1}\right)<h_{n}\left(b_{2}\right)$.

Case 4. $a_{n} \notin S_{n-1}$ and there exist paths from S_{n-1} to a_{n}. For all $a \in S_{n} \backslash S_{n-1}=$ $\left\{a \in A \backslash S_{n-1} \mid a\right.$ belongs to a path from S_{n-1} to $\left.a_{n}\right\}$, set $h_{n}(a)=z_{2}+c_{n-1}^{a}$. The rest of the argument goes analogously to Case 3 .

This concludes the construction of h_{n}. By (1) limit function $h=\bigcup_{i \in \mathbb{N}} h_{i}$ exists. By (13) and $A=\bigcup_{i \in \mathbb{N}} S_{i}, h$ is a homomorphism from \mathcal{A} to $(\mathbb{Z},<)$.

Proposition 16. $(\mathbb{Z},<)$ has the property $\mathrm{EHomDef}(\mathrm{WMSO}+\mathrm{B})$.
Proof. We translate the conditions (H1) and (H2) from Lemma 15 into WMSO + B. Cycles are excluded by the sentence \neg ECycle $_{<}$(Example 2). Moreover, for an acyclic $\{<\}$-structure \mathcal{A} we have $\mathcal{A} \models \forall x \forall y$ BPaths $<(x, y)$ (see also Example 2) if and only if for all $a, b \in A$ there is a bound $b \in \mathbb{N}$ on the length of paths from a to b. Thus, $\mathcal{A} \preceq(\mathbb{Z},<)$ if and only if $\mathcal{A} \models \neg$ ECycle $_{<} \wedge \forall x \forall y$ BPaths $_{<}(x, y)$.

Next, we extend Prop. 16 to the negation-closed structure $(\mathbb{Z},<,=)$. To do so let us fix a countable $\{<,=\}$-structure $\mathcal{A}=(A, I)$. Note that $I(=)$ is not necessarily the identity relation on A. Let $\sim=\left(I(=) \cup I(=)^{-1}\right)^{*}$ be the smallest equivalence relation on A that contains $I(=)$. Since \sim is the reflexive and transitive closure of the first-order
definable relation $I(=) \cup I(=)^{-1}$, we can construct a WMSO-formula $\tilde{\varphi}(x, y)$ (using the reach-construction from Ex. (2) that defines \sim. Let

$$
\begin{align*}
& E_{<}=\sim \circ I(<) \circ \sim \text { i.e., the relation defined by the formula } \tag{2}\\
& \varphi_{<}(x, y)=\exists u \exists v(\tilde{\varphi}(x, u) \wedge u<v \wedge \tilde{\varphi}(v, y)) . \tag{3}
\end{align*}
$$

With $\tilde{\mathcal{A}}=(\tilde{A}, \tilde{I})$ we denote the \sim-quotient of \mathcal{A} : It is a $\{<\}$-structure, its domain is the set $\tilde{A}=\left\{[a]_{\sim} \mid a \in A\right\}$ of all \sim-equivalence classes. and for two equivalence classes $[a]_{\sim}$ and $[b]_{\sim}$ we have $\left([a]_{\sim},[b]_{\sim}\right) \in \tilde{I}(<)$ iff there are $a^{\prime} \sim a$ and $b^{\prime} \sim b$ such that $\left(a^{\prime}, b^{\prime}\right) \in I(<)$. Let us write $[a]$ for $[a]_{\sim}$. We have:

Lemma 17. $\mathcal{A} \preceq(\mathbb{Z},<,=)$ if and only $\tilde{\mathcal{A}} \preceq(\mathbb{Z},<)$.
Proof. Suppose $h: \mathcal{A} \rightarrow(\mathbb{Z},<,=)$ is a homomorphism. Since $a \sim b$ implies $\underset{\tilde{A}}{h}(a)=$ $h(b)$, we can define a mapping $h^{\prime}: \tilde{A} \rightarrow \mathbb{Z}$ by $h^{\prime}([a])=h(a)$ for all $[a] \in \tilde{A}$. Now let $a, b \in A$ such that $([a],[b]) \in \tilde{I}(<)$. Then there are $a^{\prime} \sim a$ and $b^{\prime} \sim b$ such that $\left(a^{\prime}, b^{\prime}\right) \in I(<)$. Therefore $h^{\prime}([a])=h\left(a^{\prime}\right)<h\left(b^{\prime}\right)=h^{\prime}([b])$. Hence h^{\prime} is a homomorphism.

For the other direction, suppose that $h: \tilde{\mathcal{A}} \rightarrow(\mathbb{Z},<)$ is a homomorphism. We define $h^{\prime}: A \rightarrow \mathbb{Z}$ by $h^{\prime}(a)=h([a])$ for all $a \in A$. If $a, b \in A$ are such that $(a, b) \in I(=)$ then $[a]=[b]$ and therefore $h^{\prime}(a)=h^{\prime}(b)$. If $a, b \in A$ are such that $(a, b) \in I(<)$ then $([a],[b]) \in \tilde{I}(<)$, whence $h^{\prime}(a)=h([a])<h([b])=h^{\prime}(b)$. Thus, h^{\prime} is a homomorphism.

In the next lemma, we translate the conditions for the existence of a homomorphism from $\tilde{\mathcal{A}}$ to $(\mathbb{Z},<)$ into conditions in terms of \mathcal{A}.

Lemma 18. The following conditions are equivalent:

- $\tilde{\mathcal{A}}$ satisfies the conditions (H1) and (H2) from Lemma 15 ,
- The graph $\left(A, E_{<}\right)$is acyclic and for all $a, b \in A$ there is a bound $c \in \mathbb{N}$ such that all $E_{<- \text {-paths from }}$ a to b have length at most c.

Proof. The proof is straightforward once we notice that any path in $\tilde{\mathcal{A}}$ corresponds to a path in $\left(A, E_{<}\right)$. More precisely, $\left(\left[a_{0}\right], \ldots,\left[a_{k}\right]\right)$ is a path in the graph $\tilde{\mathcal{A}}$ (i.e., $\left(\left[a_{i}\right],\left[a_{i+1}\right]\right) \in \tilde{I}(<)$ for all $\left.0 \leq i<k\right)$ if and only if $\left(a_{0}, \ldots, a_{k}\right)$ is a path in $\left(A, E_{<}\right)$. It follows directly, that there is a cycle in $\left(A, E_{<}\right)$if and only if there is a cycle in \mathcal{A}. Moreover, for all $a, b \in A$, there is a bound $c \in \mathbb{N}$ on the length of $E_{<}$-paths from a to b if and only if there is a bound on the length of paths between $[a]$ and $[b]$ in $\tilde{\mathcal{A}}$.

Proposition 19. $(\mathbb{Z},<,=)$ has the property EHomDef($\mathrm{WMSO}+\mathrm{B})$.
Proof. Our aim is to find a (WMSO + B)-formula φ such that for all $\{<,=\}$-structures $\mathcal{A}, \mathcal{A} \models \varphi$ if and only if $\mathcal{A} \preceq(\mathbb{Z},<,=)$. Let $\mathcal{A}=(A, I)$ be a $\{<,=\}$-structure. We use the notations introduced before Lemma 17 By Lemma 17 and 18 we have to construct a $(\mathrm{WMSO}+\mathrm{B})$-formula expressing that \mathcal{A} has no $E_{<}$-cycles and for all $a, b \in A$ there is a bound $c \in \mathbb{N}$ on the length of $E_{<}$-paths from a to b. For this, we can use the formula constructed in the proof of Prop. 16 with $<$ replaced by the formula $\varphi_{<}$from (3).

We will later also need the following variants of Prop. 19 .
Proposition 20. $(\mathbb{N},<,=)$ and $(\mathbb{Z} \backslash \mathbb{N},<,=)$ have property EHomDef(WMSO+B).
Proof. We prove the proposition only for $(\mathbb{N},<,=)$, the statement for $(\mathbb{Z} \backslash \mathbb{N},<,=)$ can be shown analogously. Let $\mathcal{A}=(A, I)$ be a $\{<,=\}$-structure. Define the relation $E_{<}$as in (2). By adapting our proof for Prop.19, one can show that $\mathcal{A} \preceq(\mathbb{N},<,=)$ if and only if \mathcal{A} does not contain $E_{<- \text {-cycles and for each } a \in A \text { there is a bound } c \text { such }}$ that any $E_{<-}$-path from some node of A to a has length at most c. This is (WMSO+B)expressible by the sentence \neg ECycle $_{\varphi_{<}} \wedge \forall y \mathrm{~B} Z \exists x \operatorname{Path}_{\varphi<}(x, y, Z)$.

In the rest of this section, we prove Prop. 19 for the full structure \mathcal{Z} from (1), which is defined over the infinite signature $\mathcal{S}=\{<,=\} \cup\left\{=_{c} \mid c \in \mathbb{Z}\right\} \cup\left\{\equiv_{a, b} \mid 0 \leq a<b\right\}$. By the definition of $\mathrm{EHomDef}(\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$ we have to compute from a finite subsignature $\sigma \subseteq \mathcal{S}$ a $\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B})$-sentence φ_{σ} that defines the existence of a homomorphism to \mathcal{Z} when interpreted over a σ-structure \mathcal{A}. Hence, let us fix a finite subsignature $\sigma \subseteq \mathcal{S}$. We can assume that

$$
\sigma=\{<,=\} \cup\left\{=_{c} \mid c \in C\right\} \cup\left\{\equiv_{a, b} \mid b \in D, 0 \leq a<b\right\}
$$

for finite non-empty sets $C \subseteq \mathbb{Z}$ and $D \subseteq \mathbb{N} \backslash\{0,1\}$. Define $m=\min (C)$ and $M=\max (C)$. W.l.o.g. we can assume that $m \leq 0$ and $M \geq 0$. Let $\mathcal{A}=(A, I)$ be a countable σ-structure. In order to not confuse the relation $I(=)$ with the identity relation on A, we write in the following $E_{=}(x, y)$ for the atomic formula expressing that (x, y) belongs to the relation $I(=)$. Similarly, we write $E_{c}(x)$ for the atomic formula expressing that $x \in I\left(={ }_{c}\right)$. Instead of $\equiv_{a, b}(x)$ we write $x \equiv a \bmod b$.

Define $x \leq y \Leftrightarrow\left(x<y \vee E_{=}(x, y) \vee E_{=}(y, x)\right)$ and the MSO-formula

$$
\varphi_{\text {bounded }}(x)=\exists y \exists z\left(\bigvee_{c \in C} E_{c}(y) \wedge \bigvee_{c \in C} E_{c}(z) \wedge \operatorname{reach}_{\leq}(y, x) \wedge \operatorname{reach}_{\leq}(x, z)\right)
$$

Let $B=\left\{a \in A \mid \mathcal{A} \models \varphi_{\text {bounded }}(a)\right\}$. We call the induced substructure $\mathcal{B}:=\mathcal{A} \upharpoonright_{B}$ the "bounded" part of \mathcal{A}. Every homomorphism from \mathcal{B} to \mathcal{Z} has to map B to the interval [$m, M]$. Thus, a homomorphism $h: \mathcal{B} \rightarrow \mathcal{Z}$ can be identified with a partition of B into $M-m+1$ sets B_{m}, \ldots, B_{M}, where $B_{i}=\{a \in B \mid h(a)=i\}$. It follows that:

Lemma 21. There is an MSO-sentence φ_{B} such that for every \mathcal{S}-structure \mathcal{A} with bounded part \mathcal{B}, we have $\mathcal{B} \preceq \mathcal{Z}$ if and only if $\mathcal{A} \models \varphi_{B}$.

Proof. By definition of the bounded part, any homomorphism from \mathcal{B} to \mathcal{Z} maps all elements of B to a value from the interval $[m, M]$. Thus, a homomorphism $h: \mathcal{B} \rightarrow \mathcal{Z}$ can be identified with a partition of B into $M-m+1$ sets B_{m}, \ldots, B_{M}, where $B_{i}=$ $\{a \in B \mid h(a)=i\}$. Hence, the MSO-sentence states that there exists a partition of B into $M-m+1$ sets B_{m}, \ldots, B_{M} such that the corresponding mapping $h: B \rightarrow[m, M]$ preserves all relations from σ. For this we define formulas that express the following, where $\bar{X}=\left(X_{m}, \ldots, X_{M}\right)$ is a tuple of $M-m+1$ many second-order variables.

- $\varphi_{\text {part }}(\bar{X})$ expresses that \bar{X} forms a finite partition.
- $\varphi_{<}(\bar{X})$ expresses that the partition preserves the relation $I(<)$.
- $\varphi_{=}(\bar{X})$ expresses that the partition preserves the relation $I(=)$.
- $\varphi_{\text {const }}(\bar{X})$ expresses that the partition preserves all relations $I\left(=_{c}\right)$.
- $\varphi_{\text {mod }}(\bar{X})$ expresses that the partition preserves all relations $I\left(\equiv_{a, b}\right)$.

These formulas can be defined as follows:

$$
\begin{aligned}
\varphi_{\text {part }} & =\forall x \bigvee_{i \in[m, M]}\left(x \in X_{i} \wedge \bigwedge_{\substack{j \in[m, M] \\
i \neq j}} x \notin X_{j}\right), \\
\varphi_{<} & =\forall x \forall y \bigwedge_{\substack{i, j \in[m, M] \\
i \geq j}} \neg\left(x<y \wedge x \in X_{i} \wedge y \in X_{j}\right), \\
\varphi_{=} & =\forall x \forall y \bigwedge_{\substack{i, j \in[m, M] \\
i \neq j}} \neg\left(E_{=}(x, y) \wedge x \in X_{i} \wedge y \in X_{j}\right), \\
\varphi_{\text {const }} & =\forall x \bigwedge_{c \in C}\left(E_{c}(x) \rightarrow x \in X_{c}\right), \\
\varphi_{\text {mod }} & =\forall x \bigwedge_{0 \leq a<b \in D}\left(x \equiv a \bmod b \rightarrow \bigvee_{\substack{\in[m, M] \\
i \equiv a \bmod b}} x \in X_{i}\right) .
\end{aligned}
$$

Let $\psi=\exists X_{m} \cdots \exists X_{M}\left(\varphi_{\text {part }} \wedge \varphi_{<} \wedge \varphi_{=} \wedge \varphi_{\text {const }} \wedge \varphi_{\text {mod }}\right)$ and let φ_{B} be the relativization ψ to the bounded part defined by $\varphi_{\text {bounded }}(x)$. Then, $\mathcal{A} \models \varphi_{B}$ if and only if $\mathcal{B} \models \psi$ if and only if there is a homomorphism $h_{B}: \mathcal{B} \rightarrow \mathcal{Z}$.

Similar to B we define three other parts of a σ-structure by the WMSO-formulas

$$
\begin{aligned}
& \varphi_{\text {greater }}(x)=\neg \varphi_{\text {bounded }}(x) \wedge \exists y\left(\varphi_{\text {bounded }}(y) \wedge \operatorname{reach}_{\leq}(y, x)\right), \\
& \varphi_{\text {smaller }}(x)=\neg \varphi_{\text {bounded }}(x) \wedge \exists y\left(\varphi_{\text {bounded }}(y) \wedge \operatorname{reach}_{\leq}(x, y)\right) \text {, } \\
& \varphi_{\text {rest }}(x)=\neg\left(\varphi_{\text {bounded }}(x) \vee \varphi_{\text {greater }}(x) \vee \varphi_{\text {smaller }}(x)\right) \text {. }
\end{aligned}
$$

Moreover, let $G=\left\{a \in A \mid \mathcal{A} \models \varphi_{\text {greater }}(a)\right\}, S=\left\{a \in A \mid \mathcal{A} \models \varphi_{\text {smaller }}(a)\right\}$, and $R=\left\{a \in A \mid \mathcal{A} \models \varphi_{\text {rest }}(a)\right\}$. Let $\mathcal{N}=\left.\mathcal{Z}\right|_{\mathbb{N}}$ and $\overline{\mathcal{N}}=\left.\mathcal{Z}\right|_{\mathbb{Z} \backslash \mathbb{N}}$. Then we have:

Lemma 22. $\mathcal{A} \preceq \mathcal{Z}$ iff $\left(\mathcal{B} \preceq \mathcal{Z},\left.\mathcal{A}\right|_{G \cup S \cup R} \preceq \mathcal{Z},\left.\mathcal{A}\right|_{G} \preceq \mathcal{N}\right.$, and $\left.\left.\mathcal{A}\right|_{S} \preceq \overline{\mathcal{N}}\right)$.
Proof. The "only if" direction is straightforward. Just note that for a homomorphism $h: \mathcal{A} \rightarrow \mathcal{Z}, h(G)$ is bounded below by m and $h(S)$ is bounded above by M.

For the "if" direction, assume that there are

- a homomorphism $h_{B}: \mathcal{B} \rightarrow \mathcal{Z}$,
- a homomorphism $h_{R}:\left.\mathcal{A}\right|_{G \cup S \cup R} \rightarrow \mathcal{Z}$,
- a homomorphism $h_{G}:\left.\mathcal{A}\right|_{G} \rightarrow \mathcal{N}$, and
- a homomorphism $h_{S}: \mathcal{A} \upharpoonright_{S} \rightarrow \overline{\mathcal{N}}$.

Let $\delta=\prod_{b \in D} b \geq 1$ and define $h: \mathcal{A} \rightarrow \mathcal{Z}$ by

$$
h(a)= \begin{cases}h_{B}(a) & \text { if } a \in B, \\ h_{R}(a) & \text { if } a \in R, \\ \max \left(h_{R}(a), h_{G}(a)\right)+\delta \cdot(M+1) & \text { if } a \in G, \\ \min \left(h_{R}(a), h_{S}(a)\right)+\delta \cdot(m-1) & \text { if } a \in S .\end{cases}
$$

Note that $M<h(a)$ for every $a \in G$ (recall that we assume $M \geq 0$) and thus

$$
\begin{equation*}
\forall a \in B \forall a^{\prime} \in G: h(a)<h\left(a^{\prime}\right) . \tag{4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\forall a \in S \forall a^{\prime} \in B: h(a)<h\left(a^{\prime}\right) . \tag{5}
\end{equation*}
$$

Clearly, $\left(a, a^{\prime}\right) \in I(=)$ implies that a and a^{\prime} belong to the same part $(B, G, S$, or R), which implies $h(a)=h\left(a^{\prime}\right)$. Moreover, if $\left(a, a^{\prime}\right) \in I(<)$, then we we have one of the following cases:
(a) a, a^{\prime} belong to the same part,
(b) $a \in S, a^{\prime} \in G$,
(c) $a \in B, a^{\prime} \in G$,
(d) $a \in S, a^{\prime} \in B$,
(e) $a \in S, a^{\prime} \in R$,
(f) $a \in R, a^{\prime} \in G$.

In cases (a), (b), (e), and (f) we get $h(a)<h\left(a^{\prime}\right)$ by using the homomorphisms h_{B}, h_{G}, h_{S}, h_{R}. In cases (c) (resp., (d)) we get $h(a)<h\left(a^{\prime}\right)$ from (4) (resp., (57). Finally, the unary constant predicates and modulo predicates are preserved because we build the homomorphism from homomorphism that preserve these predicates.

We need some conventions on modulo constraints. A sequence $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$ with $0 \leq a_{i}<b_{i} \in D$ for $1 \leq i \leq k$ is contradictory, if there is no number $n \in \mathbb{N}$ such that $n \equiv a_{i} \bmod b_{i}$ for all $1 \leq i \leq k$. In the following let CS_{k} denote the set of contradictory sequences of length k. It is straightforward to show that every contradictory sequence contains a contradictory subsequence of length at most $\ell:=\max \{2,|D|\}$.

Recall that \sim is the smallest equivalence relation containing $I(=)$ and that \sim is defined by the WMSO-formula $\tilde{\varphi}(x, y)$. We call a σ-structure $\mathcal{A}=(A, I)$ modulo contradicting if there is a \sim-class $[c]$, elements $c_{1}, c_{2}, \ldots, c_{k} \in[c]$, and a contradictory sequence $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$ such that $c_{i} \in I\left(\equiv_{a_{i}, b_{i}}\right)$ for all $1 \leq i \leq k$.

The following WMSO-formula $\varphi_{\text {modcon }}$ expresses that a σ-structure is modulo contradicting, where we write $s_{a}(j)$ (resp. $\left.s_{b}(j)\right)$ for the first (resp. second) entry of the j-th element of the sequence $s \in \mathrm{CS}_{k}$:

$$
\varphi_{\text {modcon }}=\bigvee_{2 \leq k \leq \ell} \bigvee_{\ell \in \mathrm{CS}_{k}} \exists x_{1} \cdots \exists x_{k} \bigwedge_{i, j \leq k} \tilde{\varphi}\left(x_{i}, x_{j}\right) \wedge \bigwedge_{j \leq k} x_{j} \equiv s_{a}(j) \bmod s_{b}(j)
$$

Lemma 23. Let $\sigma^{\prime}=\sigma \backslash\left\{=_{c} \mid c \in \mathbb{Z}\right\}$. Let $\mathcal{A}=(A, I)$ be a σ^{\prime}-structure.
$-\mathcal{A} \preceq \mathcal{Z}$ iff \mathcal{A} is not modulo contradicting and $(A, I(<), I(=)) \preceq(\mathbb{Z},<,=)$.

- $\mathcal{A} \preceq \mathcal{N}$ iff \mathcal{A} is not modulo contradicting and $(A, I(<), I(=)) \preceq(\mathbb{N},<,=)$.

Proof. The "only if" directions are obvious. For the "if" directions, assume that g : $(A, I(<), I(=)) \rightarrow(\mathbb{Z},<,=)$ is a homomorphism and that \mathcal{A} is not modulo contradicting. Let

$$
\delta=\prod_{b \in D} b
$$

Hence, for each $c \in A$ there is a number $0 \leq m_{c} \leq \delta-1$ such that for all $d \sim c$, if $d \in I\left(\equiv_{a, b}\right.$) (where $0 \leq a<b \in D$) then $m_{c} \equiv a \bmod b$. Setting $h(c)=\delta \cdot g(c)+m_{c}$ we obtain a homomorphism $h: \mathcal{A} \rightarrow \mathcal{Z}$. The statement for \mathcal{N} follows in the same way.

Proof of Prop. 13 Let $\mathcal{A}=(A, I)$ be a σ-structure. We defined a partition of A into B, G, S, and R. Since membership in each of these sets is (WMSO+B)-definable, we can relativize any ($\mathrm{WMSO}+\mathrm{B}$)-formula to any of these sets. For instance, we write φ^{G} for the relativization of φ to the substructure induced by G. Let φ_{B} be the MSOformula from Lemma 21 , and for $C \in\{\mathbb{Z}, \mathbb{N}, \mathbb{Z} \backslash \mathbb{N}\}$ let φ_{C} be a formula that expresses $\mathcal{A} \preceq(C,<,=)$, see Prop. 19 and 20 Then $\mathcal{A} \models\left(\varphi_{B} \wedge \varphi_{\mathbb{Z}}^{G \cup S \cup R} \wedge \varphi_{\mathbb{N}}^{G} \wedge \varphi_{\mathbb{Z} \backslash \mathbb{N}}^{S} \wedge \neg \varphi_{\text {modcon }}\right)$ iff $\mathcal{A} \preceq \mathcal{Z}$ due to Lemmas 22 and 23 .

7 Extensions, Applications, Open Problems

A simple adaptation of our proof for \mathcal{Z} shows that $\mathcal{Q}=\left(\mathbb{Q},<,=,\left(=_{q}\right)_{q \in \mathbb{Q}}\right)$ has the property $\operatorname{EHomDef}(\operatorname{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$ as well: $\mathcal{A}=(A, I) \preceq \mathcal{Q}$ iff (i) $\left(A, E_{<}\right)$ is acyclic, where $E_{<}$is defined as in (2), (ii) there does not exist $(a, b) \in E_{<}^{+}$(the transitive closure of $E_{<}$) with $a \in I\left(=_{p}\right), b \in I\left(=_{q}\right)$ and $q \leq p$, and (iii) there do not exist $a \sim b$ with $a \in I\left(={ }_{p}\right), b \in I\left(={ }_{q}\right)$, and $q \neq p$.

Let us finally state a simple preservation theorem for \mathcal{A}-satisfiability for $\mathrm{CTL}^{*}(\mathcal{S})$. Assume that \mathcal{A} and \mathcal{B} are structures over countable signatures $\mathcal{S}_{\mathcal{A}}$ and $\mathcal{S}_{\mathcal{B}}$, respectively, and let B be the domain of \mathcal{B}. We say that \mathcal{A} is existentially interpretable in \mathcal{B} if there exist $n \geq 1$ and quantifier-free first-order formulas $\varphi\left(y_{1}, \ldots, y_{l}, x_{1}, \ldots, x_{n}\right)$ and

$$
\varphi_{r}\left(z_{1}, \ldots, z_{l_{r}}, x_{1,1}, \ldots, x_{1, n}, \ldots, x_{\operatorname{ar}(r), 1}, \ldots, x_{\operatorname{ar}(r), n}\right) \text { for } r \in \mathcal{S}_{\mathcal{A}}
$$

over the signature $\mathcal{S}_{\mathcal{B}}$, where the mapping $r \mapsto \varphi_{r}$ has to be computable, such that \mathcal{A} is isomorphic to the structure $\left(\left\{\bar{b} \in B^{n} \mid \exists \bar{c} \in B^{l}: \mathcal{B} \models \varphi(\bar{c}, \bar{b})\right\}, I\right)$ with
$I(r)=\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{\operatorname{ar}(r)}\right) \in B^{\operatorname{ar}(r) n} \mid \exists \bar{c} \in B^{l_{r}}: \mathcal{B} \models \varphi_{r}\left(\bar{c}, \bar{b}_{1}, \ldots, \bar{b}_{\operatorname{ar}(r)}\right)\right\}$ for $r \in \mathcal{S}_{\mathcal{A}}$.
Proposition 24. If $\operatorname{SATCTL}^{*}(\mathcal{B})$ is decidable and \mathcal{A} is existentially interpretable in \mathcal{B}, then $\operatorname{SATCTL}^{*}(\mathcal{A})$ is decidable too.

Proof. Let ψ be a $\mathrm{CTL}^{*}\left(\mathcal{S}_{\mathcal{A}}\right)$-formula. Let V_{ψ} be the set of constraint variables that occur in ψ. We use the notations introduced before Prop. 24 Let us choose new variables
$x_{i}, y_{x, j}$, and $z_{r, k}$ for all $1 \leq i \leq n, x \in \mathrm{~V}_{\psi}, 1 \leq j \leq l, r \in \mathcal{S}_{\mathcal{A}}$, and $1 \leq k \leq l_{r}$. Define the $\mathrm{CTL}^{*}\left(\mathcal{S}_{\mathcal{B}}\right)$-formula

$$
\theta=\psi^{\prime} \wedge \mathrm{AG} \bigwedge_{x \in \mathrm{~V}_{\psi}} \varphi\left(y_{x, 1}, \ldots, y_{x, l}, x_{1}, \ldots, x_{n}\right)
$$

(G is the derived temporal operator for 'globally"), where ψ^{\prime} is obtained from ψ by replacing in ψ every constraint

$$
r\left(\mathbf{X}^{i_{1}} x_{1}, \ldots, \mathrm{X}^{i_{\operatorname{ar}(r)}} x_{\operatorname{ar}(r)}\right)
$$

by the boolean formula

$$
\varphi_{r}\left(\mathrm{X}^{d} z_{r, 1}, \ldots, \mathrm{X}^{d} z_{r, l_{r}}, \mathrm{X}^{i_{1}} x_{1,1}, \ldots, \mathrm{X}^{i_{1}} x_{1, n}, \ldots, \mathrm{X}^{i_{\operatorname{ar}(r)}} x_{\operatorname{ar}(r), 1}, \ldots, \mathrm{X}^{i_{\mathrm{ar}(r)}} x_{\operatorname{ar}(r), n}\right),
$$

where $d=\max \left\{i_{1}, \ldots, i_{\operatorname{ar}(r)}\right\}$. Using arguments similar to those from the proof of Lemma 10, one can show that ψ is \mathcal{A}-satisfiable if and only if θ is \mathcal{B}-satisfiable.

Examples of structures \mathcal{A} that are existentially interpretable in $(\mathbb{Z},<,=)$, and hence have a decidable $\operatorname{SATCTL}^{*}(\mathcal{A})$-problem are (i) $\left(\mathbb{Z}^{n},<_{\text {lex }},=\right)$ (for $n \geq 1$), where $<_{\text {lex }}$ denotes the strict lexicographic order on n-tuples of integers, and (ii) the structure Allen $_{\mathbb{Z}}$, which consists of all \mathbb{Z}-intervals together with Allen's relations b (before), a (after), m (meets), $m i$ (met-by), o (overlaps), oi (overlapped by), d (during), $d i$ (contains), s (starts), $s i$ (started by), f (ends), $f i$ (ended by). In artificial intelligence, Allen's relations are a popular tool for representing temporal knowledge.

Our technique can be also extended to the logic ECTL* [15|16] that extends CTL* by the ability to specify arbitrary MSO-properties of infinite paths (instead of LTLproperties for $C T L^{*}$). For this one only has to extend Thm. 8 (tree model property for CTL* with constraints) to ECTL* with constraints. The proof is the same as in [9].

It remains open to determine the complexity of CTL*-satisfiability with constraints over \mathcal{Z}, see the last paragraph in the introduction. Clearly, this problem is 2EXPTIMEhard due to the known lower bound for CTL*-satisfiability. To get an upper complexity bound, one should investigate the complexity of the emptiness problem for puzzles from [1] (see Lemma 5). An interesting structure for which the decidability status for satisfiability of CTL* with constraints is open, is $\left(\{0,1\}^{*}, \leq_{p}, \leq_{p}\right)$, where \leq_{p} is the prefix order on words, and \not_{p} is its complement. It is not clear, whether this structure has the property $\mathrm{EHomDef}(\mathrm{Bool}(\mathrm{MSO}, \mathrm{WMSO}+\mathrm{B}))$.

Acknowledgments. We are grateful to Szymon Toruńczyk for fruitful discussions.

References

1. M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In Proc. STACS 2012, vol. 14 of LIPIcs, 648-660. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
2. M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees (long version). available at http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf
3. L. Bozzelli and R. Gascon. Branching-time temporal logic extended with qualitative Presburger constraints. In Proc. LPAR 2006, LNCS 4246, 197-211. Springer, 2006.
4. K.Čerāns. Deciding properties of integral relational automata. In Proc. ICALP 1994, LNCS 820, 820:35-46. Springer, 1994.
5. T. Colcombet and C. Löding. Regular cost functions over finite trees. In Proc. LICS 2010, 70-79. IEEE Computer Society, 2010.
6. B. Courcelle. The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theor. Comput. Sci., 80(2):153-202, 1991.
7. S. Demri and D. D'Souza. An automata-theoretic approach to constraint LTL. Inf. Comput., 205(3):380-415, 2007.
8. S. Demri and R. Gascon. Verification of qualitative \mathbb{Z} constraints. Theor. Comput. Sci., 409(1):24-40, 2008.
9. R. Gascon. An automata-based approach for CTL* with constraints. Electr. Notes Theor. Comput. Sci., 239:193-211, 2009.
10. C. Lutz. Description logics with concrete domains-a survey. In Advances in Modal Logic 4, pages 265-296. King's College Publications, 2003.
11. C. Lutz. Combining interval-based temporal reasoning with general TBoxes. Artificial Intelligence, 152(2):235-274, 2004.
12. C. Lutz. NEXPTIME-complete description logics with concrete domains. ACM Trans. Comput. Log., 5(4):669-705, 2004.
13. C. Lutz and M. Milicic. A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom. Reasoning, 38(1-3):227-259, 2007.
14. M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc., 141:1-35, 1969.
15. W. Thomas. Computation tree logic and regular omega-languages. In Proc. REX Workshop 1988, LNCS 354, 690-713. Springer, 1988.
16. M. Y. Vardi and P. Wolper. Yet another process logic (preliminary version). In Proc. Logic of Programs 1983, LNCS 164, 501-512. Springer, 1983.

[^0]: * This work is supported by the DFG Research Training Group 1763 (QuantLA). The second author is supported by the DFG research project GELO.

