Skip to main content

The Role of Symmetry in Conformational Changes of Viral Capsids: A Mathematical Approach

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

For many viruses, structural transitions of the viral protein containers, which encapsulate and hence provide protection for the viral genome, form an integral part of their life cycle. We review here two complementary mathematical models for the expansion of an icosahedral viral capsid. The first is based on a geometrical description of the capsid involving a library of point sets obtained by affine extensions of the icosahedral group, and allows us to characterize the space of the possible transition paths between the initial and the final state. In the second approach, the capsid is described as a union of rigid tiles that interact with each other and with the genomic material, placing emphasis on the energetic determinants of the transition event. Both models predict loss of icosahedral symmetry along the transition path, even though the final state is icosahedral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aleksiev, R. Potestio, F. Pontiggia, S. Cozzini, C. Micheletti, PiSQRD: a web server for decomposing proteins into quasi-rigid dynamical domains. Bioinformatics 25(20), 2743–2744 (2009)

    Article  Google Scholar 

  2. M. Baake, P. Kramer, M. Schlottmann, D. Zeidler, Planar patterns with fivefold symmetry as sections of periodic structures in 4-space. Int. J. Mod. Phys. B4, 2217–2268 (1990)

    Article  MathSciNet  Google Scholar 

  3. E.C. Bain, The nature of martensite. Trans. AIME 70, 25–46 (1924)

    Google Scholar 

  4. D.L.D. Caspar, A. Klug, Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. 27, 1–24 (1962)

    Article  Google Scholar 

  5. P. Cermelli, G. Indelicato, R. Twarock, Non-icosahedral pathways for viral capsid expansion. Phys. Rev. E. 88, 032710 (2013)

    Article  Google Scholar 

  6. F.H.C. Crick, J.D. Watson, The structure of small viruses. Nature 177, 473–475 (1956)

    Article  Google Scholar 

  7. N.G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane I, II. Nederl. Akad. Wetensch. Indag. Math. 43(1), 39–52, 53–66 (1981)

    Google Scholar 

  8. T. Guérin, R.F. Bruinsma, Theory of conformational transitions of viral shells. Phys. Rev. E 76, 061911 (2007)

    Google Scholar 

  9. http://viperdb.scripps.edu/

  10. G. Indelicato, P. Cermelli, D.G. Salthouse, S. Racca, G. Zanzotto, R. Twarock, A crystallographic approach to structural transitions in icosahedral viruses. J. Math. Biol. 64, 745–773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Indelicato, T. Keef, P. Cermelli, D.G. Salthouse, R. Twarock, G. Zanzotto, Structural transformations in quasicrystals induced by higher dimensional lattice transitions. Proc. R. Soc. 468, 1452–1471 (2012)

    Article  MathSciNet  Google Scholar 

  12. A. Katz, Some local properties of the 3-dimensional Penrose tilings, in Introduction to the Mathematics of Quasicrystals (Academic Press, Boston 1989), pp. 147–182

    Google Scholar 

  13. T. Keef, R. Twarock, Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses. J. Math. Biol. 59(3), 287–313 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Keef, R. Twarock, Beyond quasi-equivalence: new insights into viral architecture via affine extended symmetry groups, in Emerging Topics in Physical Virology (Imperial College Press, London, 2010), pp. 59–83

    Google Scholar 

  15. T. Keef, R. Twarock, K.M. Elsawy, Blueprints for viral capsids in the family of Papovaviridae. J. Theor. Biol. 253, 808–816 (2008)

    Article  MathSciNet  Google Scholar 

  16. T. Keef, J.P. Wardman, N.A. Ranson, P.G. Stockley, R. Twarock, Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta Cryst. A69, 140–150 (2013)

    Article  MathSciNet  Google Scholar 

  17. P. Kramer, R. Neri, On periodic and non-periodic space fillings of E m obtained by projection. Acta Cryst. A40, 580–587 (1984)

    Article  MathSciNet  Google Scholar 

  18. P. Kramer, M. Schlottmann, Dualisation of Voronoi domains and Klotz construction: a general method for the generation of proper space fillings. J. Phys. A Math. Gen. 22, L1097–L1102 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. L.S. Levitov, J. Rhyner, Crystallography of quasicrystals; application to icosahedral symmetry. J. Phys. Fr. 49(11), 1835–1849 (1988)

    Article  MathSciNet  Google Scholar 

  20. Z. Papadopolos, P. Kramer, D. Zieidler, The F-type icosahedral phase – tilings and vertex models. J. Non-cryst. Solids 153–154, 215–220 (1993)

    Article  Google Scholar 

  21. Z. Papadopolos, R. Klitzing, P. Kramer, Quasiperiodic icosahedral tilings from the six-dimensional BCC lattice. J. Phys. A Math. Gen. 30, L143–L147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Patera, R. Twarock, Affine extensions of noncrystallographic Coxeter groups and quasicrystals. J. Phys. A Math. Gen. 35, 1551–1574 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Pitteri, G. Zanzotto, Continuum Models for Phase Transitions and Twinning in Crystals (CRC/Chapman and Hall, London, 2002)

    Book  Google Scholar 

  24. C.A. Reiter, Atlas of quasicrystalline tilings. Chaos Solitons Fract. 14(7), 937–963 (2002)

    Google Scholar 

  25. I.K. Robinson, S.C. Harrison, Structure of the expanded state of tomato bushy stunt virus. Nature 297, 563–568 (1982)

    Google Scholar 

  26. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  27. M.B. Sherman, H.R. Guenther, F. Tama, T.L. Sit, C.L. Brooks, A.M. Mikhailov, E.V. Orlova, T.S. Baker, S.A. Lommel, Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol. 80(21), 10395 (2006)

    Google Scholar 

  28. J.A. Speir, S. Munshi, G. Wang, T.S. Baker, J.E. Johnson, Structures of the native and swollen forms of the cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3, 63–78 (1995)

    Article  Google Scholar 

  29. F. Tama, C.L. Brooks III, The mechanism and pathway of pH-induced swelling in cowpea chlorotic mottle virus. J. Mol. Biol. 318, 733–747 (2002)

    Article  Google Scholar 

  30. F. Tama, C.L. Brooks III, Diversity and identity of mechanical properties of icosahedral viral capsids studies with elastic network normal mode analysis. J. Mol. Biol. 345, 299–314 (2005)

    Article  Google Scholar 

  31. T.J. Tuthill, K. Harlos, T.S. Walter, N.J. Knowles, E. Groppelli, D.J. Rowlands, D.I. Stuart, E.E. Fry, Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog. 5(10), e1000620 (2009)

    Google Scholar 

  32. R. Twarock, A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226(4), 477–482 (2004)

    Article  MathSciNet  Google Scholar 

  33. R. Twarock, Mathematical virology: a novel approach to the structure and assembly of viruses. Phil. Trans. R. Soc. 364, 3357–3373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Twarock, T. Keef, Viruses and geometry: where symmetry meets function. Microbiol. Today 37, 24–27 (2010)

    Google Scholar 

Download references

Acknowledgements

RT and GI thank the Leverhulme Trust for financial support via a Research Leadership Award. PC and GI acknowledge the Italian PRIN 2009 project “Mathematics and Mechanics of Biological Systems and Soft Tissues”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cermelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cermelli, P., Indelicato, G., Twarock, R. (2014). The Role of Symmetry in Conformational Changes of Viral Capsids: A Mathematical Approach. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics