Skip to main content

Combinatorial Insights into RNA Secondary Structure

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

The interaction of discrete mathematics with molecular biology advances our understanding of important sequence/structure/function relationships. By their nature, biological sequences are often abstracted to combinatorial objects namely strings over finite alphabets and their representation as graphs or formal languages. As described in this chapter, results based on these mathematical abstractions have been used to count, compare, classify, and otherwise analyze RNA secondary structures. In this way, they provide important insights into the base pairing of RNA sequences, thereby advancing our understanding of RNA folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On March 5, 2013, the PDB [7] contained 82,105 protein and 2,510 nucleic acid structures. Concurrently, the Rfam database [12] listed 60 families of RNA molecules with at least one member having a three-dimensional structure available in the PDB. Of those, five-sixths had an average length below 250 nucleotides. The only families with an average length exceeding 400 nucleotides were three ribosomal RNA ones (archaeal, bacterial, and eukaryotic). It is worth noting that a high-resolution structure of the E. coli ribosome was first published only in 2005 [82].

  2. 2.

    Nearly all of these are for the special cases of small internal loops, denoted by the number of single-stranded bases on each side as 1 × 1, 2 × 1/1 × 2, and 2 × 2. The same special cases are included in the Turner04 parameters. It is worth noting that the number of parameters for formal-language models can also be quite large, depending on the grammar.

  3. 3.

    The degree of a loop here is the total number of base pairs in the loop.

References

  1. J. Allali, M.F. Sagot, A multiple graph layers model with application to RNA secondary structures comparison, in String Processing and Information Retrieval, ed. by M. Consens, G. Navarro. Lecture Notes in Computer Science, vol. 3772 (Springer, Berlin, 2005), pp. 348–359

    Google Scholar 

  2. J. Allali, M.F. Sagot, A new distance for high level RNA secondary structure comparison. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(1), 3–14 (2005)

    Article  Google Scholar 

  3. J.W. Anderson, P. Tataru, J. Staines, J. Hein, R. Lyngsø, Evolving stochastic context–free grammars for RNA secondary structure prediction. BMC Bioinformatics 13(1), 78 (2012)

    Google Scholar 

  4. M. Andronescu, A.P. Fejes, F. Hutter, H.H. Hoos, A. Condon, A new algorithm for RNA secondary structure design. J. Mol. Biol. 336(3), 607–624 (2004)

    Article  Google Scholar 

  5. M. Andronescu, V. Bereg, H.H. Hoos, A. Condon, RNA STRAND: The RNA secondary structure and statistical analysis database. BMC Bioinform. 9(340) (2008)

    Google Scholar 

  6. Y. Bakhtin, C.E. Heitsch, Large deviations for random trees and the branching of RNA secondary structures. Bull. Math. Biol. 71(1), 84–106 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. F.C. Bernstein, T.F. Koetzle, G.J. Williams, E.E. Meyer Jr., M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112(3), 535–542 (1977)

    Article  Google Scholar 

  8. P. Bille, A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1–3), 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Bindewald, B. Shapiro, RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. RNA 12(3), 342–352 (2006)

    Article  Google Scholar 

  10. D. Bouthinon, H. Soldano, A new method to predict the consensus secondary structure of a set of unaligned RNA sequences. Bioinformatics 15(10), 785–798 (1999)

    Article  Google Scholar 

  11. P. Brion, E. Westhof, Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997)

    Article  Google Scholar 

  12. S.W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barquist, E.P. Nawrocki, S.R. Eddy, P.P. Gardner, A. Bateman, Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 41(Database issue), D226–D232 (2013)

    Google Scholar 

  13. A. Busch, R. Backofen, INFO-RNA – a fast approach to inverse RNA folding. Bioinformatics 22(15), 1823–1831 (2006)

    Article  Google Scholar 

  14. J.J. Cannone, S. Subramanian, M.N. Schnare, J.R. Collett, L.M. D’Souza, Y. Du, B. Feng, N. Lin, L.V. Madabusi, K.M. Müller, N. Pande, Z. Shang, N. Yu, R.R. Gutell, The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 3(1), 2 (2002)

    Google Scholar 

  15. J. Chappelier, M. Rajman, A generalized CYK algorithm for parsing stochastic CFG, in First Workshop on Tabulation in Parsing and Deduction (TAPD98), Paris, 1998, pp. 133–137. Citeseer

    Google Scholar 

  16. J. Chen, S. Le, J. Maizel, Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Res. 28(4), 991–999 (2000)

    Article  Google Scholar 

  17. Z. Chi, S. Geman, Estimation of probabilistic context-free grammars. Comput. Linguist. 24(2), 299–305 (1998)

    MathSciNet  Google Scholar 

  18. P. Clote, E. Kranakis, D. Krizanc, B. Salvy, Asymptotics of canonical and saturated RNA secondary structures. J. Bioinform. Comput. Biol. 7(05), 869–893 (2009)

    Article  Google Scholar 

  19. P. Clote, Y. Ponty, J. Steyaert, Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 65, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  20. A. Condon, Problems on RNA secondary structure prediction and design, in Automata, Languages and Programming, ed. by J.C.M. Baeten et al. Lecture Notes in Computer Science, vol. 2719 (Springer, Berlin, 2003), pp. 22–32

    Google Scholar 

  21. J. Couzin, Breakthough of the year: small RNAs make big splash. Science 298(5602), 2296–2297 (2002)

    Article  Google Scholar 

  22. K.E. Deigan, T.W. Li, D.H. Mathews, K.M. Weeks, Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. 106(1), 97–102 (2009)

    Article  Google Scholar 

  23. Y. Ding, C.E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24), 7280–7301 (2003)

    Article  Google Scholar 

  24. Y. Ding, C.Y. Chan, C.E. Lawrence, RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11, 1157–1166 (2005)

    Article  Google Scholar 

  25. M. Djelloul, A. Denise, Automated motif extraction and classification in RNA tertiary structures. RNA 14(12), 2489–2497 (2008)

    Article  Google Scholar 

  26. R. Donaghey, L.W. Shapiro, Motzkin numbers. J. Comb. Theory Ser. A 23(3), 291–301 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. K.J. Doshi, J.J. Cannone, C.W. Cobaugh, R.R. Gutell, Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinform. 5(1), 105 (2004)

    Google Scholar 

  28. J.A. Doudna, Structural genomics of RNA. Nat. Struct. Biol. 7, 954–956 (2000)

    Article  Google Scholar 

  29. R. Dowell, S. Eddy, Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics 5(1), 71 (2004)

    Google Scholar 

  30. R. Dowell, S. Eddy, Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7(1), 400 (2006)

    Google Scholar 

  31. R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (University Press, Cambridge/New York, 1998)

    Book  MATH  Google Scholar 

  32. J. Earley, An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–102 (1970)

    Article  MATH  Google Scholar 

  33. S. Eddy, Noncoding RNA genes. Curr. Opin. Genet. Dev. 9(6), 695–699 (1999)

    Article  Google Scholar 

  34. S. Eddy, R. Durbin, RNA sequence analysis using covariance models. Nucleic Acids Res. 22(11), 2079–2088 (1994)

    Article  Google Scholar 

  35. W. Fontana, D. Konings, P.F. Stadler, P. Schuster, Statistics of RNA secondary structures. Biopolymers 33(9), 1389–1404 (1993)

    Article  Google Scholar 

  36. H.H. Gan, S. Pasquali, T. Schlick, Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucleic Acids Res. 31(11), 2926–2943 (2003)

    Article  Google Scholar 

  37. H.H. Gan, D. Fera, J. Zorn, N. Shiffeldrim, M. Tang, U. Laserson, N. Kim, T. Schlick, RAG: RNA-as-graphs database–concepts, analysis, and features. Bioinformatics 20(8), 1285–1291 (2004)

    Article  Google Scholar 

  38. R. Giegerich, B. Voß, M. Rehmsmeier, Abstract shapes of RNA. Nucleic Acids Res. 32(16), 4843–4851 (2004)

    Article  Google Scholar 

  39. S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, S. Eddy, Rfam: an RNA family database. Nucleic Acids Res. 31(1), 439–441 (2003)

    Article  Google Scholar 

  40. J. Havgaard, R. Lyngsø, J. Gorodkin, The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res. 33(suppl 2), W650–W653 (2005)

    Article  Google Scholar 

  41. T. Haynes, D. Knisley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC Bioinform. 7, 108 (2006)

    Article  Google Scholar 

  42. C.E. Heitsch, A. Condon, H.H. Hoos, From RNA secondary structure to coding theory: a combinatorial approach, in DNA8: Revised Papers from the 8th International Workshop on DNA Based Computers, Sapporo, ed. by A.O.M. Hagiya. Lecture Notes in Computer Science, vol. 2568 (Springer, London, 2003), pp. 215–228

    Google Scholar 

  43. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schuster, Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125(2), 167–188 (1994)

    Article  Google Scholar 

  44. I.L. Hofacker, P. Schuster, P.F. Stadler, Combinatorics of RNA secondary structures. Discret. Appl. Math. 88(1–3), 207–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. I. Hofacker, M. Fekete, P. Stadler, Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319(5), 1059–1066 (2002)

    Article  Google Scholar 

  46. V. Hower, C.E. Heitsch, Parametric analysis of RNA branching configurations. Bull. Math. Biol. 73(4), 754–776 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Y. Ji, X. Xu, G.D. Stormo, A graph theoretical approach to predict common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10), 1591–1602 (2004)

    Article  Google Scholar 

  48. T. Jiang, L. Wang, K. Zhang, Alignment of trees – an alternative to tree edit. Theor. Comput. Sci. 143(1), 137–148 (1995)

    MATH  MathSciNet  Google Scholar 

  49. V. Juan, C. Wilson, RNA secondary structure prediction based on free energy and phylogenetic analysis. J. Mol. Biol. 289(4), 935 (1999)

    Google Scholar 

  50. R. Klein, S. Eddy, Rsearch: finding homologs of single structured RNA sequences. BMC Bioinformatics 4(1), 44 (2003)

    Google Scholar 

  51. M. Knudsen, Stochastic context-free grammars and RNA secondary structure prediction. Ph.D. thesis, Aarhus Universitet, Datalogisk Institut, 2005

    Google Scholar 

  52. B. Knudsen, J. Hein, RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6), 446–454 (1999)

    Article  Google Scholar 

  53. B. Knudsen, J. Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31(13), 3423–3428 (2003)

    Article  Google Scholar 

  54. K. Lari, S. Young, The estimation of stochastic context-free grammars using the inside-outside algorithm. Comput. Speech Lang. 4(1), 35–56 (1990)

    Article  Google Scholar 

  55. S.Y. Le, R. Nussinov, J.V. Maizel, Tree graphs of RNA secondary structures and their comparisons. Comput. Biomed. Res. 22(5), 461–473 (1989)

    Article  Google Scholar 

  56. F. Lefebvre, An optimized parsing algorithm well suited to RNA folding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 220–230 (1995)

    Google Scholar 

  57. W.A. Lorenz, Y. Ponty, P. Clote, Asymptotics of RNA shapes. J. Comput. Biol. 15(1), 31–63 (2008)

    Article  MathSciNet  Google Scholar 

  58. N.R. Markham, M. Zuker, UNAFold: software for nucleic acid folding and hybridization, in Bioinformatics: Structure, Function, and Applications, ed. by J.M. Keith. Methods in Molecular Biology, vol. 453 (Humana Press, Totowa, 2008), pp. 3–31

    Google Scholar 

  59. D.H. Mathews, Revolutions in RNA secondary structure prediction. J. Mol. Biol. 359(3), 526–532 (2006)

    Article  MathSciNet  Google Scholar 

  60. D. Mathews, D. Turner et al., Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317(2), 191 (2002)

    Google Scholar 

  61. J.S. McCaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6–7), 1105–1119 (1990)

    Article  Google Scholar 

  62. V. Moulton, M. Zuker, M. Steel, R. Pointon, D. Penny, Metrics on RNA secondary structures. J. Comput. Biol. 7(1), 277–292 (2000)

    Article  Google Scholar 

  63. M.E. Nebel, On a Statistical Filter for RNA Secondary Structures (Johann-Wolfgang-Goethe-University, Institut für Informatik, Frankfurt, 2002)

    Google Scholar 

  64. M.E. Nebel, Identifying good predictions of RNA secondary structure, in Pacific Symposium on Biocomputing, Lihue, 2003, vol. 9, ed. by R.B. Altman, A.K. Dunker, L. Hunter, T.E. Klein, pp. 423–434

    Google Scholar 

  65. M.E. Nebel, A. Scheid, Evaluation of a sophisticated SCFG design for RNA secondary structure prediction. Theory Biosci. 130(4), 313–336 (2011)

    Article  Google Scholar 

  66. M.E. Nebel, F. Weinberg, Algebraic and combinatorial properties of common RNA pseudoknot classes with applications. J. Comput. Biol. 19(10), 1134–1150 (2012)

    Article  MathSciNet  Google Scholar 

  67. H.F. Noller, C.R. Woese, Secondary structure of 16S ribosomal RNA. Science 212(4493), 403–411 (1981)

    Article  Google Scholar 

  68. R. Nussinov, G. Pieczenik, J.R. Griggs, D.J. Kleitman, Algorithms for loop matchings. SIAM J. Appl. Math. 35(1), 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Poznanović, C. Heitsch, Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding (2012, preprint). arXiv:1204.3670

    Google Scholar 

  70. C. Reidys, Combinatorial Computational Biology of RNA: Pseudoknots and Neutral Networks (Springer, New York/London, 2010)

    Google Scholar 

  71. C.M. Reidys, F.W.D. Huang, J.E. Andersen, R.C. Penner, P.F. Stadler, M.E. Nebel, Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–1085 (2011)

    Article  Google Scholar 

  72. E. Rivas, S.R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  73. E. Rivas, S. Eddy, The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16(4), 334–340 (2000)

    Article  Google Scholar 

  74. Y. Sakakibara, M. Brown, R. Hughey, I. Mian, K. Sjölander, R. Underwood, D. Haussler, Stochastic context-free grammers for tRNA modeling. Nucleic Acids Res. 22(23), 5112–5120 (1994)

    Article  Google Scholar 

  75. J. Sánchez, J. Benedí, Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 1052–1055 (1997)

    Article  Google Scholar 

  76. D. Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  77. C. Saule, M. Régnier, J.-M. Steyaert, A. Denise, Counting RNA pseudoknotted structures. J. Comput. Biol. 18(10), 1339–1351 (2011)

    Article  MathSciNet  Google Scholar 

  78. A. Scheid, M.E. Nebel, Statistical RNA secondary structure sampling based on a length-dependent SCFG model. Technical report, University of Kaiserslautern, 5, 2012

    Google Scholar 

  79. W.R. Schmitt, M.S. Waterman, Linear trees and RNA secondary structure. Discret. Appl. Math. 51(3), 317–323 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  80. P. Schuster, P.F. Stadler, A. Renner, RNA structures and folding: from conventional to new issues in structure predictions. Curr. Opin. Struct. Biol. 7(2), 229–235 (1997)

    Article  Google Scholar 

  81. M.P. Schützenberger, On context-free languages and push-down automata. Inf. Control 6, 246–264 (1963)

    Article  MATH  Google Scholar 

  82. B.S. Schuwirth, M.A. Borovinskaya, C.W. Hau, W. Zhang, A. Vila-Sanjurjo, J.M. Holton, J.H.D. Cate, Structures of the bacterial ribosome at 3.5 Å resolution. Science 310(5749), 827–834 (2005)

    Google Scholar 

  83. D. Searls, The language of genes. Nature 420(6912), 211–217 (2002)

    Article  Google Scholar 

  84. B.A. Shapiro, An algorithm for comparing multiple RNA secondary structures. Comput. Appl. Biosci. 4(3), 387–393 (1988)

    Google Scholar 

  85. B.A. Shapiro, K. Zhang, Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci. 6(4), 309–318 (1990)

    Google Scholar 

  86. R.P. Stanley, Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  87. P.R. Stein, M.S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers. Discret. Math. 26(3), 261–272 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  88. A. Stolcke, An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Comput. Linguist. 21(2), 165–201 (1995)

    MathSciNet  Google Scholar 

  89. Z. Sükösd, B. Knudsen, J. Kjems, C. Pedersen, Ppfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 28, 2691–2692 (2012)

    Google Scholar 

  90. I. Tinoco Jr., C. Bustamante, How RNA folds. J. Mol. Biol. 293(2), 271–281 (1999)

    Google Scholar 

  91. B.J. Tucker, R.R. Breaker, Inventing and improving ribozyme function: rational design versus iterative selection methods. Curr. Opin. Struct. Biol. 15(3), 342–348 (2005)

    Article  Google Scholar 

  92. D.H. Turner, D.H. Mathews, NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2010)

    Article  Google Scholar 

  93. B. Voß, R. Giegerich, M. Rehmsmeier, Complete probabilistic analysis of RNA shapes. BMC Biol. 4(1), 5 (2006)

    Google Scholar 

  94. S. Washietl, I.L. Hofacker, P.F. Stadler, M. Kellis, RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res. 40(10), 4261–4272 (2012)

    Article  Google Scholar 

  95. M.S. Waterman, Secondary structure of single-stranded nucleic acids, in Studies in Foundations and Combinatorics, ed. by G.-C. Rota. Advances in Mathematics. Supplementary Studies, vol. 1 (Academic, New York, 1978), pp. 167–212

    Google Scholar 

  96. K. Weeks, Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20(3), 295–304 (2010)

    Article  Google Scholar 

  97. S. Wuchty, W. Fontana, I.L. Hofacker, P. Schuster, Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2), 145–165 (1999)

    Article  Google Scholar 

  98. A. Yoffe, P. Prinsen, W. Gelbart, A. Ben-Shaul, The ends of a large RNA molecule are necessarily close. Nucleic Acids Res. 39(1), 292–299 (2011)

    Article  Google Scholar 

  99. D. Younger, Recognition and parsing of context-free languages in time n 3. Inf. Control 10(2), 189–208 (1967)

    Article  MATH  Google Scholar 

  100. K. Zarringhalam, M.M. Meyer, I. Dotu, J.H. Chuang, P. Clote, Integrating chemical footprinting data into RNA secondary structure prediction. PloS ONE 7(10), e45160 (2012)

    Google Scholar 

  101. K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  102. M. Zuker, RNA folding prediction: the continued need for interaction between biologists and mathematicians, in Some Mathematical Questions in Biology – DNA Sequence Analysis (New York, 1984). Lectures on Mathematics in the Life Sciences, vol. 17. (American Mathematical Society, Providence, 1986), pp. 87–124

    Google Scholar 

  103. M. Zuker, On finding all suboptimal foldings of an RNA molecule. Science 244(4900), 48–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  104. M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  105. M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Heitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heitsch, C., Poznanović, S. (2014). Combinatorial Insights into RNA Secondary Structure. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics