Abstract
Recent progress on defining abstract trace semantics for coalgebras rests upon two observations: (i) coalgebraic bisimulation for deterministic automata coincides with trace equivalence, and (ii) the classical powerset construction for automata determinization instantiates the generic idea of lifting a functor to the Eilenberg-Moore category of an appropriate monad \(\mathbb{T}\). We take this approach one step further by rebasing the latter kind of trace semantics on the novel notion of \(\mathbb{T}\) -observer, which is just a certain natural transformation of the form F → GT, and thus allowing for elimination of assumptions about the structure of the coalgebra functor. As a specific application of this idea we demonstrate how it can be used for capturing trace semantics of push-down automata. Furthermore, we show how specific forms of observers can be used for coalgebra-based treatment of internal automata transitions as well as weak bisimilarity of processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adámek, J., Herrlich, H., Strecker, G.: Abstract and concrete categories. John Wiley & Sons Inc., New York (1990)
Baeten, J.C.M., Luttik, B., van Tilburg, P.: Reactive turing machines. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 348–359. Springer, Heidelberg (2011)
Barbosa, L.S.: Towards a calculus of state-based software components. Journal of Universal Comp. Sci. 9, 891–909 (2003)
Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comp. Logic 14(1), 7:1–7:7 (2013)
Dubuc, E.: Kan Extensions in Enriched Category Theory. LNM, vol. 145 (1970)
Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In: LICS 1999 (1999)
Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting processes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 276–287. Springer, Heidelberg (2011)
Goncharov, S., Schröder, L.: Powermonads and tensors of unranked effects. In: LICS 2011, pp. 227–236 (2011)
Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. In: CMCS 2006. Elect. Notes in Theor. Comp. Sci., vol. 164, pp. 47–65. Elsevier (2006)
Hyland, M., Plotkin, G., Power, J.: Combining computational effects: Commutativity & Sum. In: TCS 2002, vol. 223, pp. 474–484. Kluwer (2002)
Jacobs, B.: Trace semantics for coalgebras. Electron. Notes Theor. Comput. Sci. 106, 167–184 (2004)
Jacobs, B., Poll, E.: Coalgebras and Monads in the Semantics of Java. Theoret. Comput. Sci. 291, 329–349 (2003)
Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 109–129. Springer, Heidelberg (2012)
Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor. Comput. Sci. 412(38), 5043–5069 (2011)
Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23(1), 113–120 (1972)
Mac Lane, S.: Categories for the Working Mathematician. Springer (1971)
Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)
Moggi, E.: A modular approach to denotational semantics. In: Curien, P.-L., Pitt, D.H., Pitts, A.M., Poigné, A., Rydeheard, D.E., Abramsky, S. (eds.) CTCS 1991. LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991)
Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
Pavlovic, D., Mislove, M., Worrell, J.B.: Testing semantics: Connecting processes and process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 308–322. Springer, Heidelberg (2006)
Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)
Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)
Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Cat. Struct. 11, 69–94 (2003)
Power, J., Shkaravska, O.: From comodels to coalgebras: State and arrays. In: CMCS 2004. ENTCS, vol. 106, pp. 297–314 (2004)
Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages. Word, Language, Grammar, vol. 1. Springer-Verlag New York, Inc. (1997)
Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)
Rutten, J.J.M.M.: Algebraic specification and coalgebraic synthesis of mealy automata. Electr. Notes Theor. Comput. Sci. 160, 305–319 (2006)
Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing determinization from automata to coalgebras. LMCS 9(1) (2013)
Silva, A., Sokolova, A.: Sound and complete axiomatization of trace semantics for probabilistic systems. Electr. Notes Theor. Comput. Sci. 276, 291–311 (2011)
Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor. Comput. Sci. 203(5), 263–284 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goncharov, S. (2013). Trace Semantics via Generic Observations. In: Heckel, R., Milius, S. (eds) Algebra and Coalgebra in Computer Science. CALCO 2013. Lecture Notes in Computer Science, vol 8089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40206-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-40206-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40205-0
Online ISBN: 978-3-642-40206-7
eBook Packages: Computer ScienceComputer Science (R0)