Skip to main content

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8098))

Included in the following conference series:

Abstract

Given a graph and a set of service centers, a Capacity Constrained Network-Voronoi Diagram (CCNVD) partitions the graph into a set of contiguous service areas that meet service center capacities and minimize the sum of the distances (min-sum) from graph-nodes to allotted service centers. The CCNVD problem is important for critical societal applications such as assigning evacuees to shelters and assigning patients to hospitals. This problem is NP-hard; it is computationally challenging because of the large size of the transportation network and the constraint that Service Areas (SAs) must be contiguous in the graph to simplify communication of allotments. Previous work has focused on honoring either service center capacity constraints (e.g., min-cost flow) or service area contiguity (e.g., Network Voronoi Diagrams), but not both. We propose a novel Pressure Equalizer (PE) approach for CCNVD to meet the capacity constraints of service centers while maintaining the contiguity of service areas. Experiments and a case study using post-hurricane Sandy scenarios demonstrate that the proposed algorithm has comparable solution quality to min-cost flow in terms of min-sum; furthermore it creates contiguous service areas, and significantly reduces computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABC News: Hurricane sandy’s aftermath: Long lines at gas stations (2012), http://goo.gl/omQ62 (retrieved March 2013)

  2. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19(17), 248–264 (1972)

    Article  MATH  Google Scholar 

  3. Tomizawa, N.: On some techniques useful for solution of transportation network problems. Networks 2(17), 173–194 (1971)

    Article  MathSciNet  Google Scholar 

  4. Daskin, M.: Network and discrete location: models, algorithms, and applications. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1995)

    Google Scholar 

  5. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41(2), 338–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algorithm. Operations Research 22(1), 1–29 (1997)

    MathSciNet  Google Scholar 

  7. Ahuja, R., Magnanti, T., Orlin, J.: Network flows: theory, algorithms, and applications. Prentice Hall (1993)

    Google Scholar 

  8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. A. Springer (2003)

    Google Scholar 

  9. Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics. Springer, Heidelberg (2012)

    Book  Google Scholar 

  10. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1-2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  11. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by successive approximation. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 7–18. ACM (1987)

    Google Scholar 

  13. Frank, A.: Connections in combinatorial optimization, vol. 38. Oxford Univ. Pr. (2011)

    Google Scholar 

  14. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley (2011)

    Google Scholar 

  15. Johnson, D.S., McGeoch, C.C.: Network flows and matching: first DIMACS implementation challenge, vol. 12. Amer. Mathematical Society (1993)

    Google Scholar 

  16. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15(3), 430–466 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science 14(3), 205–220 (1967)

    Article  MATH  Google Scholar 

  18. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM (JACM) 36(4), 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams, vol. 501. Wiley (2009)

    Google Scholar 

  20. Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. Statistics in Practice. Wiley (2012)

    Google Scholar 

  21. Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: Concepts, computational methods, and applications. International Journal of Geographical Information Science 22(9), 965–994 (2008)

    Article  Google Scholar 

  23. Győri, E.: On division of graphs to connected subgraphs. In: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), vol. 1, pp. 485–494 (1976)

    Google Scholar 

  24. Lovász, L.: A homology theory for spanning trees of a graph. Acta Mathematica Academiae Scientiarum Hungarica 30(3-4), 241–251 (1993)

    Article  Google Scholar 

  25. Győri, E.: Partition conditions and vertex-connectivity of graphs. Combinatorica 1(3), 263–273 (1981)

    Article  MathSciNet  Google Scholar 

  26. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics 10(2), 139–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diwan, A.A.: Partitioning into connected parts (slide 7) in graph partitioning problems. In: Research Promotion Workshop on Introduction to Graph and Geometric Algorithms (January 2011), http://goo.gl/b8fTN

  28. Barth, D., Fournier, H.: A degree bound on decomposable trees. Discrete Mathematics 306(5), 469–477 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM) 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  30. OpenStreetMap, http://goo.gl/Hso0 (retrieved January 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, K., Shekhar, A.H., Oliver, D., Shekhar, S. (2013). Capacity-Constrained Network-Voronoi Diagram: A Summary of Results. In: Nascimento, M.A., et al. Advances in Spatial and Temporal Databases. SSTD 2013. Lecture Notes in Computer Science, vol 8098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40235-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40235-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40234-0

  • Online ISBN: 978-3-642-40235-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics