Skip to main content

Exploring Interest Points and Local Descriptors for Word Spotting Application on Historical Handwriting Images

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

Abstract

Recently, local features especially point descriptors have received lots of interest in the computer vision and image processing communities. SIFT and SURF descriptors have shown their powerful usefulness on natural object recognition and classification. However, the use of local descriptors such as SIFT and SURF is still not very common in handwritten document image analysis now. In this paper, we propose an investigation on the description of handwriting by applying different interest points and local descriptors on historical handwritten images in the context of a coarse-to-fine segmentation-free word spotting method. The observation and analysis based on the experimental results can help optimizing the description of handwriting according to different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreas, F., Andreas, K., Volkmar, F., Horst, B.: HMM-Based Word Spotting in Handwritten Documents Using Subword Models. In: Proc. of the ICPR, pp. 3416–3419 (2010)

    Google Scholar 

  2. José, R., Florent, P.: Handwritten Word Spotting Using Hidden Markov Models and Universal Vocabularies. Pattern Recognition 42(9), 2106–2116 (2009)

    Article  MATH  Google Scholar 

  3. Tony, M.R., Word Spotting, R.M.: for Historical Documents. In: Proc. of the 9th ICDAR, vol. 9(2-4), pp. 139–152 (2007)

    Google Scholar 

  4. Yann, L., Asma, O., Frank, L., Hubert, E.: Towards an Omnilingual Word Retrieval System for Ancient Manuscripts. Pattern Recognition 42(9), 2089–2105 (2009)

    Article  MATH  Google Scholar 

  5. José, R.: Local Gradient Histogram Features for Word Spotting in Unconstrained Handwritten Documents. In: Proc. of the 11th ICFHR, pp. 7–12 (2008)

    Google Scholar 

  6. Marçal, R., David, A., Ricardo, T., Joseph, L.: Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting Method. In: Proc. of the 11th ICDAR, pp. 63–67 (2011)

    Google Scholar 

  7. Jean, C.: Utilisation des Points d’Intérêt pour Rechercher des Mots Imprimes ou Manuscrits dans les Documents Anciens. In: Proc. of CIFED, pp. 163–178 (2012)

    Google Scholar 

  8. Angelika, G., Robert, S., Markus, D.: Layout Analysis for Historical Manuscripts Using SIFT Features. In: Proc. of the 11th ICDAR, pp. 508–512 (2011)

    Google Scholar 

  9. Andrew, J.N., Lewis, D.G.: Multiscale Histogram of Oriented Gradient Descriptors for Robust Character Recognition. In: Proc. of the 11th ICDAR, pp. 1085–1089 (2011)

    Google Scholar 

  10. Peng, W.: Historical Document Image Analysis and Recognition. In: Proc. of the 5th JDT du LIRIS, pp. 35–36 (2013)

    Google Scholar 

  11. Youssouf, C., Robert, W., Mohamed, C.: TSV-LR: Topological Signature Vector-Based Lexicon Reduction for Fast Recognition of Pre-modern Arabic Subwords. In: Proc. of the 2011 Workshop on HIP, pp. 6–13 (2011)

    Google Scholar 

  12. Serge, B., Jitendra, M., Jan, P.: Shape Matching and Object Recognition Using Shape Contexts. IEEE trans. on PAMI 24, 509–522 (2002)

    Article  Google Scholar 

  13. Richard, G.C., Eric, L.: Strategies in Character Segmentation: A Survey. In: Proc. of the 3rd ICDAR, pp. 1028–1033 (1995)

    Google Scholar 

  14. David, G.L.: Distinctive Image Features From Scale-Invariant Keypoints. Intl. Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Herbert, B., Tinne, T., Luc, V.G.: Speeded-Up Robust Features(SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  16. Cordelia, S., Roger, M., Christian, B.: Evaluation of Interest Point Detectors. Intl. Journal of Computer Vision 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, P., Eglin, V., Largeron, C., McKenna, A., Garcia, C. (2013). Exploring Interest Points and Local Descriptors for Word Spotting Application on Historical Handwriting Images. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics