Skip to main content

Kernel Maximum Mean Discrepancy for Region Merging Approach

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

  • 4422 Accesses

Abstract

Kernel methods are becoming increasingly challenging for use in a wide variety of computer vision applications. This paper introduces the use of Kernel Maximum Mean Discrepancy (KMMD) for region merging process. KMMD is a recent unsupervised kernel-based method commonly used in analysing and comparing distributions. We propose a region merging approach based on the KMMD framework which aims at improving the quality of an initial segmentation result. The performance of the proposed method has been compared with four states of the art region merging methods over a test of Berkeley image segmentation data set by means of the probabilistic rand index and variation of information errors. Experiments show that our approach succeeds in achieving a segmentation quality equal to or greater than the referenced methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, J., Wang, J., Zhang, C.: Color image segmentation: Kernel do the feature space. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 253–264. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Matas, J., Kittler, J.: Spatial and feature space clustering: Applications in image analysis. In: Computer Analysis of Images and Patterns, pp. 162–173 (1995)

    Google Scholar 

  3. Lefèvre, S.: A new approach for unsupervised classification in image segmentation. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 113–131. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Salah, M.B., Mitiche, A., Ayed, I.B.: Multiregion image segmentation by parametric kernel graph cuts. IEEE Transactions on Image Processing 20(2), 545–557 (2011)

    Article  MathSciNet  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal similarity based region merging. Pattern Recogn. 43(2), 445–456 (2010)

    Article  MATH  Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  8. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Google Scholar 

  9. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  Google Scholar 

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables (1962)

    Google Scholar 

  11. Arcones, M.A., Gine, E.: On the boostrap of u and v statistics. Annals of Statistics 20(2), 655–674 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  13. Slimene, A., Zagrouba, E.: A new pso based kernel clustering method for image segmentation. In: Seventh International Conference on Signal Image Technology and Internet-Based Systems, pp. 350–357 (2011)

    Google Scholar 

  14. Unnikrishnan, R., Hebert, M.: Measures of similarity. In: Application of Computer Vision, vol. 1, pp. 394–400 (2005)

    Google Scholar 

  15. Meila, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 577–584 (2005)

    Google Scholar 

  16. Liu, X., Wang, D.: A spectral histogram model for textons and texture discrimination. Vision Research 42(23), 2617–2634 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slimene, A., Zagrouba, E. (2013). Kernel Maximum Mean Discrepancy for Region Merging Approach. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics