Abstract
A real-time range flow based ego-motion estimator for a moving depth sensor is presented. The estimator recovers the translation and rotation components of a sensor’s motion and integrates these temporally. To ensure accurate inter-frame motion estimates, an iterative form of the estimator is developed. To minimise drift in the pose, additional temporal constraint is provided through the use of anchor frames. The algorithm is evaluated on the recently published TUB RGB-D Benchmark. Performance is commensurate with alternative methodologies such as SLAM but at a fraction of the computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anandan, P., Bergen, J.R., Hanna, K.J., Hingorani, R.: Hierarchical Model-Based Motion Estimation, pp. 1–22. Kluwer Academic Publishers, Boston (1993)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. International Journal of Computer Vision 92(1), 1–31 (2011)
Barron, J.L., Spies, H.: The Fusion of Image and Range Flow. In: Proceedings of the 10th International Workshop on Theoretical Foundations of Computer Vision: Multi-Image Analysis, London, UK, pp. 171–189 (2001)
Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-time Single Camera SLAM. IEEE Transactions Pattern Analysis Machine Intelligence 29(6), 1052–1067 (2007)
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An Evaluation of the RGB-D SLAM System. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), St. Paul, MA, USA (May 2012)
Gottfried, J.-M., Fehr, J., Garbe, C.S.: Computing Range Flow from Multi-modal Kinect Data. In: Bebis, G. (ed.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 758–767. Springer, Heidelberg (2011)
Harville, M., Rahimi, A., Darrell, T., Gordon, G., Woodfill, J.: 3D Pose Tracking with Linear Depth and Brightness Constraints. In: International Conference on Computer Vision, pp. 206–213 (1999)
Horn, B.K.P., Harris, J.: Rigid Body Motion from Range Image Sequences. CVGIP: Image Understanding 3(1), 1–13 (1991)
Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality (2011)
Holmes, S.A., Klein, G., Murray, D.W.: An O(N^2) Square Root Unscented Kalman filter for Visual Simultaneous Localization and Mapping. IEEE Transactions Pattern Analysis Machine Intelligence 31(7), 1251–1253 (2009)
Sabata, B., Aggarwal, J.K.: Estimation of Motion from a Pair of Range Images: A review. CVGIP 54(3), 309–324 (1991)
Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A Review of Recent Range Image Registration Methods with Accuracy Evaluation. Image and Vision Computing 25(5), 578–596 (2007)
Spies, H., Jahne, B., Barron, J.L.: Range Flow Estimation. Computer Vision and Image Understanding 85, 209–231 (2002)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A Benchmark for the Evaluation of RGB-D SLAM Systems. In: International Conference on Intelligent Robot Systems (October 2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jones, G.A., Hunter, G. (2013). Spatio-temporal Support for Range Flow Based Ego-Motion Estimators. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)