Skip to main content

Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

  • 4645 Accesses

Abstract

Single image blind deconvolution aims to estimate the unknown blur from a single observed blurred image and recover the original sharp image. Such task is severely ill-posed and typical approaches involve some heuristic or other steps without clear mathematical explanation to arrive at an acceptable solution. We show that a straightforward maximum a posteriory estimation combined with very sparse priors and an efficient numerical method can produce results, which compete with much more complicated state-of-the-art methods.

This work was supported by GA UK under grant 938213, by GACR under grant 13-29225S, and by AVCR under grant M100751201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Processing 7(3), 370–375 (1998)

    Article  Google Scholar 

  2. Chang, M.M., Tekalp, A.M., Erdem, A.T.: Blur identification using the bispectrum. IEEE Trans. Signal Processing 39(10), 2323–2325 (1991)

    Article  Google Scholar 

  3. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 787–794. ACM, New York (2006)

    Chapter  Google Scholar 

  5. Galatsanos, N.P., Mesarovic, V.Z., Molina, R., Katsaggelos, A.K.: Hierarchical Bayesian image restoration from partially known blurs. IEEE Transactions on Image Processing 9(10), 1784–1797 (2000)

    Article  Google Scholar 

  6. Godard, D.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications 28(11), 1867–1875 (1980)

    Article  Google Scholar 

  7. Jia, J.: Single image motion deblurring using transparency. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition CVPR 2007, June 17–22, pp. 1–8 (2007)

    Google Scholar 

  8. Joshi, N., Szeliski, R., Kriegman, D.J.: PSF estimation using sharp edge prediction. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition CVPR 2008, June 23–28, pp. 1–8 (2008)

    Google Scholar 

  9. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(12), 2354–2367 (2011)

    Article  Google Scholar 

  10. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1964–1971 (2009)

    Google Scholar 

  11. Miskin, J., MacKay, D.J.C.: Ensemble learning for blind image separation and deconvolution. In: Girolani, M. (ed.) Advances in Independent Component Analysis, pp. 123–142. Springer (2000)

    Google Scholar 

  12. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research. Springer (2006)

    Google Scholar 

  13. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Papers, pp. 1–10. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Shan, Q., Xiong, W., Jia, J.: Rotational motion deblurring of a rigid object from a single image. In: Proc. IEEE 11th International Conference on Computer Vision ICCV 2007, October 14–21, pp. 1–8 (2007)

    Google Scholar 

  15. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Yitzhaky, Y., Kopeika, N.S.: Identification of blur parameters from motion blurred images. Graphical Models and Image Processing 59(5), 310–320 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotera, J., Šroubek, F., Milanfar, P. (2013). Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics