Abstract
Focus fusion methods combine a set of images focused at different depths into a single image where all parts are in focus. The quality of the fusion result strongly depends on a decision map that determines the in-focus areas. Most approaches in the literature achieve this by local decisions without explicitly enforcing smoothness of the depth map. The goal of our paper is to introduce a modern regularisation strategy where we assume that neighbouring pixels in the resulting image have a similar depth. To this end, we consider a partial differential equation (PDE) for the depth map. It combines a robustified data fidelity term with an anisotropic diffusion strategy that involves a matrix-valued diffusion tensor. Experiments with synthetic and real-world data show that this depth map regularisation can improve existing fusion methods substantially. Our methodology is general and can be applied to improve many existing fusion methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ogden, J.M., Adelson, E.H., Bergen, J.R., Burt, P.J.: Pyramid-based computer graphics. RCA Engineer 30(5), 4–15 (1985)
Petrovic, V.S., Xydeas, C.S.: Gradient-based multiresolution image fusion. IEEE Transactions on Image Processing 13(2), 228–237 (2004)
Li, H., Manjunath, B.S., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Computer Vision, Graphics, and Image Processing 57(3), 235–245 (1995)
Valdecasas, A.G., Marshall, D., Becerra, J.M., Terrero, J.J.: On the extended depth of focus algorithms for bright field microscopy. Micron 32(6), 559–569 (2001)
Aslantas, V., Kurban, R.: A comparison of criterion functions for fusion of multi-focus noisy images. Optics Communications 282(16), 3231–3242 (2009)
Wang, W.-W., Shui, P.-L., Feng, X.-C.: Variational models for fusion and denoising of multifocus images. IEEE Signal Processing Letters 15, 65–68 (2008)
Pop, S., Lavialle, O., Terebes, R., Borda, M.: A PDE-based approach for image fusion. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 121–131. Springer, Heidelberg (2007)
Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S.M., Colburn, A., Curless, B., Salesin, D., Cohen, M.F.: Interactive digital photomontage. ACM Transactions on Graphics 23(3), 294–302 (2004)
Šroubek, F., Cristóbal, G., Flusser, J.: Image fusion based on level set segmentation. In: Proc. 14th European Signal Processing Conference, Florence, Italy, pp. 1–5 (September 2006)
Li, S., Bin, Y.: Multifocus image fusion using region segmentation and spatial frequency. Image and Vision Computing 26(7), 971–979 (2008)
Barth, O., Osthof, M.: ”Focal stack photography“ project. ”Computational photography“ lecture. Saarland University, Germany (2010), http://www.mpi-inf.mpg.de/departments/d4/teaching/ss2010/ComputationalPhotography/projects/focalstack/
Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. International Journal of Computer Vision 93(3), 368–388 (2011)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)
Weickert, J., Welk, M., Wickert, M.: L 2-stable nonstandard finite differences for anisotropic diffusion. In: Kuijper, A., Pock, T., Bredies, K., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 380–391. Springer, Heidelberg (2013)
Di Zenzo, S.: A note on the gradient of multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)
Weickert, J.: Coherence-enhancing diffusion of colour images. Image and Vision Computing 17, 201–212 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boshtayeva, M., Hafner, D., Weickert, J. (2013). Focus Fusion with Anisotropic Depth Map Smoothing. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)