Abstract
In this paper, we propose using adaptive pixel/patch-based stereo matching for 2D face recognition. We don’t perform 3D reconstruction but define a measure of the similarity of two 2D face images. After rectifying the two images by epipolar geometry, we match them using the similarity for face recognition. The proposed approach has been tested on the CMU PIE and FERET database and demonstrates superior performance compared to existing methods in real-world situations including changes in pose and illumination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), pp. 586–591 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)
Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Transactions on Image Processing 16, 1716–1725 (2007)
Castillo, C.D., Jacobs, D.W.: Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2298–2304 (2009)
Gross, R., Matthews, S.B.I., Kanade, T.: Face recognition across pose and illumination. In: Jain, A.K., Li, S.Z. (eds.) Handbook of Face Recognition. Springer-Verlag New York, Inc. (2005)
Sarfraz, M.S., Hellwich, O.: Probabilistic learning for fully automatic face recognition across pose. Image and Vision Computing 28, 744–753 (2010)
Sharma, A., Jacobs, D.W.: Ieee: Bypassing Synthesis: PLS for Face Recognition with Pose, Low-Resolution and Sketch. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (2011)
Ashraf, A.B., Lucey, S., Tsuhan, C.: Learning patch correspondences for improved viewpoint invariant face recognition. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 8 (2008)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)
Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 401–406 (1998)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1615–1618 (2003)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)
Wenchao, Z., Shiguang, S., Wen, G., Xilin, C., Hongming, Z.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 781, pp. 786–791 (2005)
Gao, H., Ekenel, H.K., Stiefelhagen, R.: Pose Normalization for Local Appearance-Based Face Recognition. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 32–41. Springer, Heidelberg (2009)
Mostafa, E.A., Farag, A.A.: Dynamic weighting of facial features for automatic pose-invariant face recognition. In: 2012 Canadian Conference on Computer and Robot Vision, pp. 411–416 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, R., Feng, W., Zhu, M. (2013). Adaptive Pixel/Patch-Based Stereo Matching for 2D Face Recognition. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-40261-6_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40260-9
Online ISBN: 978-3-642-40261-6
eBook Packages: Computer ScienceComputer Science (R0)