Skip to main content

A Machine Learning Approach for Displaying Query Results in Search Engines

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

  • 2624 Accesses

Abstract

In this paper, we propose an approach that displays the results of a search engine query in a more effective way. Each web page retrieved by the search engine is subjected to a summarization process and the important content is extracted. The system consists of four stages. First, the hierarchical structures of documents are extracted. Then the lexical chains in documents are identified to build coherent summaries. The document structures and lexical chains are used to learn a summarization model by the next component. Finally, the summaries are formed and displayed to the user. Experiments on two datasets showed that the method significantly outperforms traditional search engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alam, H., Kumar, A., Nakamura, M., Rahman, A.F.R., Tarnikova, Y., Wilcox, C.: Structured and Unstructured Document Summarization: Design of a Commercial Summarizer Using Lexical Chains. In: Proc. of the 7th International Conference on Document Analysis and Recognition, pp. 1147–1150 (2003)

    Google Scholar 

  2. Amini, M.R., Tombros, A., Usunier, N., Lalmas, M.: Learning Based Summarisation of XML Documents. Journal of Information Retrieval 10(3), 233–255 (2007)

    Article  Google Scholar 

  3. Berker, M., Güngör, T.: Using Genetic Algorithms with Lexical Chains for Automatic Text Summarization. In: Proc. of the 4th International Conference on Agents and Artificial Intelligence (ICAART), Vilamoura, Portugal, pp. 595–600 (2012)

    Google Scholar 

  4. Cobra: Java HTML Renderer & Parser (2010), http://lobobrowser.org/cobra.jsp

  5. Gonzàlez, E., Fuentes, M.: A New Lexical Chain Algorithm Used for Automatic Summarization. In: Proc. of the 12th International Congress of the Catalan Association of Artificial Intelligence (CCIA) (2009)

    Google Scholar 

  6. Guo, Y., Stylios, G.: An Intelligent Summarisation System Based on Cognitive Psychology. Information Sciences 174(1-2), 1–36 (2005)

    Article  Google Scholar 

  7. Hobson, S.P., Dorr, B.J., Monz, C., Schwartz, R.: Task-based Evaluation of Text Summarisation Using Relevance Prediction. Information Processing and Management 43(6), 1482–1499 (2007)

    Article  Google Scholar 

  8. Joachims, T.: Advances in Kernel Methods: Support Vector Learning. MIT (1999)

    Google Scholar 

  9. Otterbacher, J., Radev, D., Kareem, O.: News to Go: Hierarchical Text Summarisation for Mobile Devices. In: Proc. of 29th Annual ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 589–596 (2006)

    Google Scholar 

  10. Pembe, F.C., Güngör, T.: Structure-Preserving and Query-Biased Document Summarisation for Web Searching. Online Information Review 33(4) (2009)

    Google Scholar 

  11. Princeton University, About WordNet (2010), http://wordnet.princeton.edu

  12. Roussinov, D.G., Chen, H.: Information Navigation on the Web by Clustering and Summarizing Query Results. Information Processing and Management 37 (2001)

    Google Scholar 

  13. Szlavik, Z., Tombros, A., Lalmas, M.: Investigating the Use of Summarisation for Interactive XML Retrieval. In: Proc. of ACM Symposium on Applied Computing (2006)

    Google Scholar 

  14. Xue, X.-B., Zhou, Z.-H.: Improving Web Search Using Image Snippets. ACM Transactions on Internet Technology 8(4) (2008)

    Google Scholar 

  15. Yang, C.C., Wang, F.L.: Hierarchical Summarization of Large Documents. Journal of American Society for Information Science and Technology 59(6), 887–902 (2008)

    Article  Google Scholar 

  16. Yeh, J.Y., Ke, H.R., Yang, W.P., Meng, I.H.: Text Summarisation Using a Trainable Summariser and Latent Semantic Analysis. Information Processing and Management 41(1), 75–95 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Güngör, T. (2013). A Machine Learning Approach for Displaying Query Results in Search Engines. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics