Skip to main content

Deformable Shape Reconstruction from Monocular Video with Manifold Forests

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

Abstract

A common approach to recover structure of 3D deformable scene and camera motion from uncalibrated 2D video sequences is to assume that shapes can be accurately represented in linear subspaces. These methods are simple and have been proven effective for reconstructions of objects with relatively small deformations, but have considerable limitations when the deformations are large or complex. This paper describes a novel approach to reconstruction of deformable objects utilising a manifold decision forest technique. The key contribution of this work is the use of random decision forests for the shape manifold learning. The learned manifold defines constraints imposed on the reconstructed shapes. Due to nonlinear structure of the learned manifold, this approach is more suitable to deal with large and complex object deformations when compared to the linear constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Trajectory space: A dual representation for nonrigid structure from motion. IEEE PAMI 33, 1442–1456 (2011)

    Article  Google Scholar 

  2. Arias, P., Randall, G., Sapiro, G.: Connecting the out-of sample and pre-image problems in kernel methods. In: ICPR, pp. 1–8 (2007)

    Google Scholar 

  3. Coifman, R., Lafon, S.: Diffusion maps. Appl. Comp. Harm. Anal. 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Computer Vision 7, 81–227 (2012)

    Article  Google Scholar 

  5. Gotardo, P., Martinez, A.M.: Computing smooth time-trajectories for camera and deformable shape in structure from motion with occlusion. IEEE PAMI 33, 2051–2065 (2011)

    Article  Google Scholar 

  6. Gotardo, P., Martinez, A.M.: Kernel non-rigid structure from motion. In: ICCV, pp. 802–809 (2011)

    Google Scholar 

  7. Hamsici, O.C., Gotardo, P.F.U., Martinez, A.M.: Learning spatially-smooth mappings in non-rigid structure from motion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 260–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Matuszewski, B., Quan, W., Shark, L.-K., McLoughlin, A., Lightbody, C., Emsley, H., Watkins, C.: Hi4d–adsip 3d dynamic facial articulation database. Image and Vision Computing 10, 713–727 (2012)

    Article  Google Scholar 

  9. Paladini, M., Bue, A., Xavier, J., Stosic, M., Dodig, M., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: CVPR, pp. 2898–2905 (2009)

    Google Scholar 

  10. Rabaud, V., Belongie, S.: Linear embeddings in non-rigid structure from motion. In: CVPR, pp. 2427–2434 (2009)

    Google Scholar 

  11. Tao, L., Matuszewski, B.J.: Non-rigid strucutre from motion with diffusion maps prior. In: CVPR (2013)

    Google Scholar 

  12. Tao, L., Matuszewski, B.J., Mein, S.J.: Non-rigid structure from motion with incremental shape prior. In: ICIP, pp. 1753–1756 (2012)

    Google Scholar 

  13. Varol, A., Salzmann, M., Fua, P., Urtasun, R.: A constrained latent variable model. In: CVPR, pp. 2248–2255 (2012)

    Google Scholar 

  14. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.: A 3d face expression database for facial behavior research. In: AFGR, pp. 211–216 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, L., Matuszewski, B.J. (2013). Deformable Shape Reconstruction from Monocular Video with Manifold Forests. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics