Abstract
Benchmark data sets consisting of image pairs and ground truth homographies are used for evaluating fundamental computer vision challenges, such as the detection of image features. The mostly used benchmark provides data with only low resolution images. This paper presents an evaluation benchmark consisting of high resolution images of up to 8 megapixels and highly accurate homographies. State of the art feature detection approaches are evaluated using the new benchmark data. It is shown that existing approaches perform differently on the high resolution data compared to the same images with lower resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision (IJCV) 60, 63–86 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27, 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision (IJCV) 65, 43–72 (2005)
Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: IEEE International Conference on Computer Vision (ICCV), pp. 230–235 (1998)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision (IJCV) 37, 151–172 (2000)
Haja, A., Jähne, B., Abraham, S.: Localization accuracy of region detectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, vol. 3 (2008)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Förstner, W., Dickscheid, T., Schindler, F.: Detecting interpretable and accurate scale-invariant keypoints. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 2256–2263 (2009)
Mobahi, H., Zitnick, C., Ma, Y.: Seeing through the blur. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1736–1743 (2012)
Brown, M., Lowe, D.G.: Invariant features from interest point groups. In: British Machine Vision Conference (BMVC), pp. 656–665 (2002)
Cordes, K., Rosenhahn, B., Ostermann, J.: Increasing the accuracy of feature evaluation benchmarks using differential evolution. In: IEEE Symposium Series on Computational Intelligence (SSCI) - IEEE Symposium on Differential Evolution (SDE). IEEE Computer Society (2011)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. British Machine Vision Conference (BMVC) 1, 384–393 (2002)
Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based on local, affinely invariant regions. In: British Machine Vision Conference (BMVC), pp. 412–425 (2000)
Tuytelaars, T., Van Gool, L.: Content-based image retrieval based on local affinely invariant regions. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 493–500. Springer, Heidelberg (1999)
Hartley, R.I., Zisserman, A.: Multiple View Geometry, 2nd edn. Cambridge University Press (2003)
Price, K.V., Storn, R., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cordes, K., Rosenhahn, B., Ostermann, J. (2013). High-Resolution Feature Evaluation Benchmark. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-40261-6_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40260-9
Online ISBN: 978-3-642-40261-6
eBook Packages: Computer ScienceComputer Science (R0)