Abstract
In database applications, the availability of a conceptual schema and semantics constitute invaluable leverage for improving the effectiveness, and sometimes the efficiency, of many tasks including query processing, keyword search and schema/data integration. The Object-Relationship-Attribute model for Semi-Structured data (ORA-SS) model is a conceptual model intended to capture the semantics of object classes, object identifiers, relationship types, etc., underlying XML schemas and data. We refer to the set of these semantic concepts as the ORA-semantics. In this work, we present a novel approach to automatically discover the ORA-semantics from data-centric XML. We also empirically and comparatively evaluate the effectiveness of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with COMA++. In: SIGMOD Conference, pp. 906–908 (2005)
Chen, Y.B., Ling, T.W., Lee, M.L.: Designing valid XML views. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 463–477. Springer, Heidelberg (2002)
Hegewald, J., Naumann, F., Weis, M.: Xstruct: Efficient schema extraction from multiple and large XML documents. In: ICDE Workshops, p. 81 (2006)
Kalashnikov, D.V., Mehrotra, S.: Domain-independent data cleaning via analysis of entity-relationship graph. ACM Trans. Database Syst. 31(2), 716–767 (2006)
Li, L., Le, T.N., Wu, H., Ling, T.W., Bressan, S.: Discovering semantics from data-centric XML. Technical Report TRA6/13, National University of Singapore
Ling, T.W., Lee, M.L., Dobbie, G.: Semistructured database design (2005)
Liu, Z., Chen, Y.: Identifying meaningful return information for XML keyword search. In: SIGMOD Conference, pp. 329–340 (2007)
Mfourga, N.: Extracting entity-relationship schemas from relational databases: A form-driven approach. In: WCRE, pp. 184–193 (1997)
Mizuta, S., Hanya, K.: Specifications of word set in linguistic approach for similarity estimation. In: BICoB, pp. 25–29 (2010)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
Y.S.: A personal perspective on keyword search over data graphs. In: ICDT (2013)
Xu, Y., Papakonstantinou, Y.: Efficient lca based keyword search in XML data. In: EDBT, pp. 535–546 (2008)
Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection and normalization. VLDB J. 17(2), 203–223 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, L., Le, T.N., Wu, H., Ling, T.W., Bressan, S. (2013). Discovering Semantics from Data-Centric XML. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 2013. Lecture Notes in Computer Science, vol 8055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40285-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-40285-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40284-5
Online ISBN: 978-3-642-40285-2
eBook Packages: Computer ScienceComputer Science (R0)