Abstract
It is now possible to collect and share trajectory data for any ship in the world by various means such as satellite and VHF systems. However, the publication of such data also creates new risks for privacy breach with consequences on the security and liability of the stakeholders. Thus, there is an urgent need to develop methods for preserving the privacy of published trajectory data. In this paper, we propose and comparatively investigate two mechanisms for the publication of the trajectory of individual ships under differential privacy guarantees. Traditionally, privacy and differential privacy is achieved by perturbation of the result or the data according to the sensitivity of the query. Our approach, instead, combines sampling and interpolation. We present and compare two techniques in which we sample and interpolate (a priori) and interpolate and sample (a posteriori), respectively. We show that both techniques achieve a (0, δ) form of differential privacy. We analytically and empirically, with real ship trajectories, study the privacy guarantee and utility of the methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agard, B., Morency, C., Trépanier, M.: Mining public transport user behaviour from smart card data. In: The 12th IFAC Symposium on Information Control Problems in Manufacturing, INCOM (2006)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103. IEEE (2007)
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)
Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in moving objects databases. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 376–385. IEEE Computer Society, Washington, DC (2008)
Chen, R., Fung, B.C.M., Desai, B.C.: Differentially private trajectory data publication. CoRR abs/1112.2020 (2011)
Mandel, C., Frese, U.: Comparison of wheelchair user interfaces for the paralysed: Head-joystick vs. verbal path selection from an offered route-set. In: Proceedings of the 3rd European Conference on Mobile Robots, ECMR 2007 (2007)
Chaudhuri, K., Mishra, N.: When random sampling preserves privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 198–213. Springer, Heidelberg (2006)
Gehrke, J., Hay, M., Lui, E., Pass, R.: Crowd-blending privacy. Cryptology ePrint Archive, Report 2012/456 (2012), http://eprint.iacr.org/
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)
Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 51–60. IEEE (2010)
Shao, D., Jiang, K., Kister, T., Bressan, S., TAN, K.L.: Publishing trajectory with differential privacy: A priori vs a posteriori sampling mechanisms. Technical Report: TRA4/13 (2013), https://dl.comp.nus.edu.sg/dspace/handle/1900.100/3932
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shao, D., Jiang, K., Kister, T., Bressan, S., Tan, KL. (2013). Publishing Trajectory with Differential Privacy: A Priori vs. A Posteriori Sampling Mechanisms. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 2013. Lecture Notes in Computer Science, vol 8055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40285-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-40285-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40284-5
Online ISBN: 978-3-642-40285-2
eBook Packages: Computer ScienceComputer Science (R0)