Skip to main content

Results and Analysis of the ChaLearn Gesture Challenge 2012

  • Conference paper
Advances in Depth Image Analysis and Applications (WDIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7854))

Included in the following conference series:

Abstract

The KinectTMcamera has revolutionized the field of computer vision by making available low cost 3D cameras recording both RGB and depth data, using a structured light infrared sensor. We recorded and made available a large database of 50,000 hand and arm gestures. With these data, we organized a challenge emphasizing the problem of learning from very few examples. The data are split into subtasks, each using a small vocabulary of 8 to 12 gestures, related to a particular application domain: hand signals used by divers, finger codes to represent numerals, signals used by referees, Marshalling signals to guide vehicles or aircrafts, etc. We limited the problem to single users for each task and to the recognition of short sequences of gestures punctuated by returning the hands to a resting position. This situation is encountered in computer interface applications, including robotics, education, and gaming. The challenge setting fosters progress in transfer learning by providing for training a large number of subtasks related to, but different from the tasks on which the competitors are tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  4. Escalante, H.J., Guyon, I.: Principal motion: PCA-based reconstruction of motion histograms. Technical report, ChaLearn (2012)

    Google Scholar 

  5. Escalera, S., Fornés, A., Pujol, O., Lladós, J., Radeva, P.: Circular blurred shape model for multiclass symbol recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B 41(2), 497–506 (2011)

    Article  Google Scholar 

  6. Fanelli, G., Gall, J., Van Gool, L.J.: Real time head pose estimation with random regression forests. In: CVPR, pp. 617–624 (2011)

    Google Scholar 

  7. Gallo, L., Placitelli, A.P., Ciampi, M.: Controller-free exploration of medical image data: Experiencing the kinect. In: CBMS, pp. 1–6 (2011)

    Google Scholar 

  8. Gori, I., Fanello, S.R., Metta, G., Odone, F.: All gestures you can: a memory game. Technical report, Istituto Italiano di Tecnologia, Italy, Submitted to JMLR (2012)

    Google Scholar 

  9. Guyon, I., Athitsos, V., Jangyodsuk, P., Escalante, H.J.: The ChaLearn Gesture Dataset (CGD 2011). Submitted to Machine Vision and Applications (2013)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. Springer, New York (2001)

    Google Scholar 

  11. Keskin, C., Kira, F., Kara, Y.E., Akarun, L.: Randomized decision forests for static and dynamic hand shape classification. In: CVPR Workshops, pp. 31–36. IEEE (2012)

    Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  13. Lafferty, J.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data, pp. 282–289. Morgan Kaufmann (2001)

    Google Scholar 

  14. Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2-3), 107–123 (2005)

    Article  Google Scholar 

  15. Lucena, M., de la Blanca, N.P., Fuertes, J.M., Marín-Jiménez, M.J.: Human action recognition using optical flow accumulated local histograms. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 32–39. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Malgireddy, M., Nwogu, I., Govindaraju, V.: Language-motivated approaches to action recognition. Submitted to JMLR (2013)

    Google Scholar 

  17. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: CVPR, pp. 1862–1869 (2012)

    Google Scholar 

  18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knoweledge and Data Engineering 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  19. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 257–286 (1989)

    Google Scholar 

  20. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory IT-13(2), 260–269 (1967)

    Article  Google Scholar 

  21. Wan, J., Ruan, Q., Li, W.: One-shot learning gesture recognition from rgb-d data using bag-of-features. JMLR (in press, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guyon, I., Athitsos, V., Jangyodsuk, P., Escalante, H.J., Hamner, B. (2013). Results and Analysis of the ChaLearn Gesture Challenge 2012. In: Jiang, X., Bellon, O.R.P., Goldgof, D., Oishi, T. (eds) Advances in Depth Image Analysis and Applications. WDIA 2012. Lecture Notes in Computer Science, vol 7854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40303-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40303-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40302-6

  • Online ISBN: 978-3-642-40303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics