Abstract
Probabilistic analysis for metric optimization problems has mostly been conducted on random Euclidean instances, but little is known about metric instances drawn from distributions other than the Euclidean.
This motivates our study of random metric instances for optimization problems obtained as follows: Every edge of a complete graph gets a weight drawn independently at random. The length of an edge is then the length of a shortest path (with respect to the weights drawn) that connects its two endpoints.
We prove structural properties of the random shortest path metrics generated in this way. Our main structural contribution is the construction of a good clustering. Then we apply these findings to analyze the approximation ratios of heuristics for matching, the traveling salesman problem (TSP), and the k-center problem, as well as the running-time of the 2-opt heuristic for the TSP. The bounds that we obtain are considerably better than the respective worst-case bounds. This suggests that random shortest path metrics are easy instances, similar to random Euclidean instances, albeit for completely different structural reasons.
A full version with all proofs is available at http://arxiv.org/abs/1306.3030.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addario-Berry, L., Broutin, N., Lugosi, G.: The longest minimum-weight path in a complete graph. Combin. Probab. Comput. 19(1), 1–19 (2010)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer (1999)
Avis, D., Davis, B., Steele, J.M.: Probabilistic analysis of a greedy heuristic for Euclidean matching. Probab. Engrg. Inform. Sci. 2, 143–156 (1988)
Azar, Y.: Lower bounds for insertion methods for TSP. Combin. Probab. Comput. 3, 285–292 (1994)
Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: First passage percolation on the Erdős-Rényi random graph. Combin. Probab. Comput. 20(5), 683–707 (2011)
Blair-Stahn, N.D.: First passage percolation and competition models. arXiv:1005.0649v1 [math.PR] (2010)
Broadbent, S.R., Hemmersley, J.M.: Percolation processes. I. Crystals and mazes. Proceedings of the Cambridge Philosophical Society 53(3), 629–641 (1957)
Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old k-opt algorithm for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)
Davis, R., Prieditis, A.: The expected length of a shortest path. Inform. Process. Lett. 46(3), 135–141 (1993)
Dyer, M., Frieze, A.M., Pittel, B.: The average performance of the greedy matching algorithm. Ann. Appl. Probab. 3(2), 526–552 (1993)
Dyer, M.E., Frieze, A.M.: On patching algorithms for random asymmetric travelling salesman problems. Math. Program. 46, 361–378 (1990)
Eckhoff, M., Goodman, J., van der Hofstad, R., Nardi, F.R.: Short paths for first passage percolation on complete graphs. arXiv:1211.4569v1 [math.PR] (2012)
Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm for the TSP. Oper. Res. Lett. 37(2), 83–84 (2009)
Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-opt algorithm for the TSP. In: Proc. of the 18th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1295–1304. SIAM (2007)
Frieze, A.M.: On random symmetric travelling salesman problems. Math. Oper. Res. 29(4), 878–890 (2004)
Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Appl. Math. 10, 57–77 (1985)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)
Hassin, R., Zemel, E.: On shortest paths in graphs with random weights. Math. Oper. Res. 10(4), 557–564 (1985)
van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: First passage percolation on the random graph. Probab. Engrg. Inform. Sci. 15(2), 225–237 (2001)
van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: Size and weight of shortest path trees with exponential link weights. Combin. Probab. Comput. 15(6), 903–926 (2006)
Janson, S.: One, two, three times logn/n for paths in a complete graph with edge weights. Combin. Probab. Comput. 8(4), 347–361 (1999)
Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations. Kluwer (2002)
Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)
Karp, R.M., Steele, J.M.: Probabilistic analysis of heuristics. In: Lawler, E.L., et al. (eds.) The Traveling Salesman Problem, pp. 181–205. Wiley (1985)
Kulkarni, V.G., Adlakha, V.G.: Maximum flow in planar networks in exponentially distributed arc capacities. Comm. Statist. Stochastic Models 1(3), 263–289 (1985)
Kulkarni, V.G.: Shortest paths in networks with exponentially distributed arc lengths. Networks 16(3), 255–274 (1986)
Kulkarni, V.G.: Minimal spanning trees in undirected networks with exponentially distributed arc weights. Networks 18(2), 111–124 (1988)
Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in o(n 2) time with high probability. In: Proc. of the 51st Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 663–672. IEEE (2010)
Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching. SIAM J. Comput. 10(4), 676–681 (1981)
Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)
Ross, S.M.: Introduction to Probability Models. Academic Press (2010)
Supowit, K.J., Plaisted, D.A., Reingold, E.M.: Heuristics for weighted perfect matching. In: Proc. of the 12th Ann. ACM Symp. on Theory of Computing (STOC), pp. 398–419. ACM (1980)
Vershik, A.M.: Random metric spaces and universality. Russian Math. Surveys 59(2), 259–295 (2004)
Walkup, D.W.: On the expected value of a random assignment problem. SIAM J. Comput. 8(3), 440–442 (1979)
Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems. Springer (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bringmann, K., Engels, C., Manthey, B., Rao, B.V.R. (2013). Random Shortest Paths: Non-euclidean Instances for Metric Optimization Problems. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)