Abstract
We study the consequences of NP having non-uniform polynomial size circuits of various types. We continue the work of Agrawal and Arvind [1] who study the consequences of Sat being many-one reducible to functions computable by non-uniform circuits consisting of a single weighted threshold gate. (Sat \(\leq_m^p \mathrm{LT}_1\)). They claim that P= NP follows as a consequence, but unfortunately their proof was incorrect.
We take up this question and use results from computational learning theory to show that if Sat \(\leq_m^p \mathrm{LT}_1\) then PH = PNP.
We furthermore show that if Sat disjunctive truth-table (or majority truth-table) reduces to a sparse set then Sat \(\leq_m^p\) LT1 and hence a collapse of PH to PNP also follows. Lastly we show several interesting consequences of Sat \(\leq_{dtt}^p\) SPARSE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M., Arvind, V.: Geometric sets of low information content. Theor. Comput. Sci. 158(1-2), 193ā219 (1996)
Allender, E., Hemachandra, L.A., Ogiwara, M., Watanabe, O.: Relating equivalence and reducibility to sparse sets. SIAM J. Comput. 21(3), 521ā539 (1992)
Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319ā342 (1987)
Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)
Arvind, V., Han, Y., Hemachandra, L., Kƶbler, J., Lozano, A., Mundhenk, M., Ogiwara, M., Schƶning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low information content. In: Ambos-Spies, K., Homer, S., Schƶning, U. (eds.) Complexity Theory: Current Research, pp. 1ā45. Cambridge University Press (1993)
Arvind, V., Kƶbler, J., Mundhenk, M.: Bounded truth-table and conjunctive reductions to sparse and tally sets. Technical report, University of Ulm (1992)
Arvind, V., Kƶbler, J., Mundhenk, M.: Lowness and the complexity of sparse and tally descriptions. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 249ā258. Springer, Heidelberg (1992)
Arvind, V., Kƶbler, J., Mundhenk, M.: On bounded truth-table, conjunctive, and randomized reductions to sparse sets. In: Proc. 12th CFSTTCS, pp. 140ā151. Springer (1992)
Arvind, V., Kƶbler, J., Mundhenk, M.: Hausdorff reductions to sparse sets and to sets of high information content. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 232ā241. Springer, Heidelberg (1993)
Arvind, V., Kƶbler, J., Mundhenk, M.: Monotonous and randomized reductions to sparse sets. Theo. Inform. and Appl. 30(2), 155ā179 (1996)
Arvind, V., Kƶbler, J., Mundhenk, M.: Upper bounds for the complexity of sparse and tally descriptions. Theor. Comput. Syst. 29, 63ā94 (1996)
Arvind, V., TorĆ”n, J.: Sparse sets, approximable sets, and parallel queries to NP. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 281ā290. Springer, Heidelberg (1999)
Berman, L., Hartmanis, J.: On isomorphisms and density of NP and other complete sets. In: Proc. 8th STOC, pp. 30ā40 (1976)
Bshouty, N.H., Cleve, R., GavaldĆ , R., Kannan, S., Tamon, C.: Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci. 52(3), 421ā433 (1996)
Cai, J.-Y.: S\(^{p}_{2}\) ā ZPPNP. J. Comput. Syst. Sci. 73(1), 25ā35 (2002)
Cai, J.-Y., Naik, A.V., Sivakumar, D.: On the existence of hard sparse sets under weak reductions. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 307ā318. Springer, Heidelberg (1996)
Fortnow, L., Klivans, A.: NP with small advice. In: Proc. 20th CCC, pp. 228ā234 (2005)
Harkins, R., Hitchcock, J.M.: Dimension, halfspaces, and the density of hard sets. Theor. Comput. Syst. 49(3), 601ā614 (2011)
Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM J. Comput. 36(6), 1696ā1708 (2007)
Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits. In: Proc. 29th STOCS, pp. 220ā229 (1997)
Kadin, J.: P NP[O(logn)] and sparse Turing-complete sets for NP. J. Comput. Syst. Sci. 39(3), 282ā298 (1989)
Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inform. Comput. 55(1-3), 40ā56 (1982)
Karp, R., Lipton, R.: Some connections between nonuniform and uniform complexity classes. In: Proc. 12th STOC, pp. 302ā309 (1980)
Kƶbler, J., Watanabe, O.: New collapse consequences of NP having small circuits. In: FĆ¼lƶp, Z., GĆ©cseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 196ā207. Springer, Heidelberg (1995)
Maass, W., TurĆ”n, G.: How fast can a threshold gate learn? In: Worksh. Comput. Learn. Theor. & Natur. Learn. Syst., vol. 1, pp. 381ā414. MIT Press, Cambridge (1994)
Mahaney, S.: Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. J. Comput. Syst. Sci. 25(2), 130ā143 (1982)
Muroga, S., Toda, I., Takasu, S.: Theory of majority decision elements. J. Franklin. I. 271(5), 376ā418 (1961)
Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149ā167 (1994)
Ogiwara, M., Watanabe, O.: Polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM J. Comput. 20(3), 471ā483 (1991)
Ranjan, D., Rohatgi, P.: On randomized reductions to sparse sets. In: Proc. 7th STOC, pp. 239ā242 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buhrman, H., Fortnow, L., Hitchcock, J.M., Loff, B. (2013). Learning Reductions to Sparse Sets. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)