Skip to main content

Learning Reductions to Sparse Sets

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

We study the consequences of NP having non-uniform polynomial size circuits of various types. We continue the work of Agrawal and Arvind [1] who study the consequences of Sat being many-one reducible to functions computable by non-uniform circuits consisting of a single weighted threshold gate. (Sat \(\leq_m^p \mathrm{LT}_1\)). They claim that P= NP follows as a consequence, but unfortunately their proof was incorrect.

We take up this question and use results from computational learning theory to show that if Sat \(\leq_m^p \mathrm{LT}_1\) then PH = PNP.

We furthermore show that if Sat disjunctive truth-table (or majority truth-table) reduces to a sparse set then Sat \(\leq_m^p\) LT1 and hence a collapse of PH to PNP also follows. Lastly we show several interesting consequences of Sat \(\leq_{dtt}^p\) SPARSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Arvind, V.: Geometric sets of low information content. Theor. Comput. Sci. 158(1-2), 193ā€“219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allender, E., Hemachandra, L.A., Ogiwara, M., Watanabe, O.: Relating equivalence and reducibility to sparse sets. SIAM J. Comput. 21(3), 521ā€“539 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319ā€“342 (1987)

    Google Scholar 

  4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  5. Arvind, V., Han, Y., Hemachandra, L., Kƶbler, J., Lozano, A., Mundhenk, M., Ogiwara, M., Schƶning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low information content. In: Ambos-Spies, K., Homer, S., Schƶning, U. (eds.) Complexity Theory: Current Research, pp. 1ā€“45. Cambridge University Press (1993)

    Google Scholar 

  6. Arvind, V., Kƶbler, J., Mundhenk, M.: Bounded truth-table and conjunctive reductions to sparse and tally sets. Technical report, University of Ulm (1992)

    Google Scholar 

  7. Arvind, V., Kƶbler, J., Mundhenk, M.: Lowness and the complexity of sparse and tally descriptions. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 249ā€“258. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  8. Arvind, V., Kƶbler, J., Mundhenk, M.: On bounded truth-table, conjunctive, and randomized reductions to sparse sets. In: Proc. 12th CFSTTCS, pp. 140ā€“151. Springer (1992)

    Google Scholar 

  9. Arvind, V., Kƶbler, J., Mundhenk, M.: Hausdorff reductions to sparse sets and to sets of high information content. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 232ā€“241. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  10. Arvind, V., Kƶbler, J., Mundhenk, M.: Monotonous and randomized reductions to sparse sets. Theo. Inform. and Appl. 30(2), 155ā€“179 (1996)

    MATH  Google Scholar 

  11. Arvind, V., Kƶbler, J., Mundhenk, M.: Upper bounds for the complexity of sparse and tally descriptions. Theor. Comput. Syst. 29, 63ā€“94 (1996)

    MATH  Google Scholar 

  12. Arvind, V., TorĆ”n, J.: Sparse sets, approximable sets, and parallel queries to NP. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 281ā€“290. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Berman, L., Hartmanis, J.: On isomorphisms and density of NP and other complete sets. In: Proc. 8th STOC, pp. 30ā€“40 (1976)

    Google Scholar 

  14. Bshouty, N.H., Cleve, R., GavaldĆ , R., Kannan, S., Tamon, C.: Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci. 52(3), 421ā€“433 (1996)

    Article  MATH  Google Scholar 

  15. Cai, J.-Y.: S\(^{p}_{2}\) āŠ† ZPPNP. J. Comput. Syst. Sci. 73(1), 25ā€“35 (2002)

    Article  Google Scholar 

  16. Cai, J.-Y., Naik, A.V., Sivakumar, D.: On the existence of hard sparse sets under weak reductions. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 307ā€“318. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Fortnow, L., Klivans, A.: NP with small advice. In: Proc. 20th CCC, pp. 228ā€“234 (2005)

    Google Scholar 

  18. Harkins, R., Hitchcock, J.M.: Dimension, halfspaces, and the density of hard sets. Theor. Comput. Syst. 49(3), 601ā€“614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM J. Comput. 36(6), 1696ā€“1708 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits. In: Proc. 29th STOCS, pp. 220ā€“229 (1997)

    Google Scholar 

  21. Kadin, J.: P NP[O(logn)] and sparse Turing-complete sets for NP. J. Comput. Syst. Sci. 39(3), 282ā€“298 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inform. Comput. 55(1-3), 40ā€“56 (1982)

    MATH  Google Scholar 

  23. Karp, R., Lipton, R.: Some connections between nonuniform and uniform complexity classes. In: Proc. 12th STOC, pp. 302ā€“309 (1980)

    Google Scholar 

  24. Kƶbler, J., Watanabe, O.: New collapse consequences of NP having small circuits. In: FĆ¼lƶp, Z., GĆ©cseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 196ā€“207. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  25. Maass, W., TurĆ”n, G.: How fast can a threshold gate learn? In: Worksh. Comput. Learn. Theor. & Natur. Learn. Syst., vol. 1, pp. 381ā€“414. MIT Press, Cambridge (1994)

    Google Scholar 

  26. Mahaney, S.: Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. J. Comput. Syst. Sci. 25(2), 130ā€“143 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Muroga, S., Toda, I., Takasu, S.: Theory of majority decision elements. J. Franklin. I. 271(5), 376ā€“418 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149ā€“167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ogiwara, M., Watanabe, O.: Polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM J. Comput. 20(3), 471ā€“483 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ranjan, D., Rohatgi, P.: On randomized reductions to sparse sets. In: Proc. 7th STOC, pp. 239ā€“242 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhrman, H., Fortnow, L., Hitchcock, J.M., Loff, B. (2013). Learning Reductions to Sparse Sets. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics