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Abstract. Meta-kernelization theorems are general results that provide polynomial kernels for large classes
of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender
et al. (FOCS’09) and of Fomin et al. (FOCS’10), apply to optimization problems parameterized bysolution
size. We present meta-kernelization theorems that use astructural parametersof the input and not the solution
size. LetC be a graph class. We define theC-cover numberof a graph to be a the smallest number of modules
the vertex set can be partitioned into such that each module induces a subgraph that belongs to the classC.
We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a poly-
nomial kernel with a linear number of vertices when parameterized by theC-cover number for any fixed class
C of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean width). Many graph
problems such as INDEPENDENTDOMINATING SET, c-COLORING, andc-DOMATIC NUMBER are covered
by this meta-kernelization result.
Our second result applies to MSO expressible optimization problems, such as MINIMUM VERTEX COVER,
M INIMUM DOMINATING SET, and MAXIMUM CLIQUE. We show that these problems admit a polynomial
annotated kernel with a linear number of vertices.

1 Introduction

Kernelization is an algorithmic technique that has become the subject of a very active field in parameterized com-
plexity, see, e.g., the references in [12,19,25]. Kernelization can be considered as apreprocessing with perfor-
mance guaranteethat reduces an instance of a parameterized problem in polynomial time to a decision-equivalent
instance, thekernel, whose size is bounded by a function of the parameter alone [12,19,15]; if the reduced in-
stance is an instance of a different problem, then it is called abikernel. Once a kernel or bikernel is obtained, the
time required to solve the original instance is bounded by a function of the parameter and therefore independent
of the input size. Consequently one aims at (bi)kernels thatare as small as possible.

Every fixed-parameter tractable problem admits a kernel, but the size of the kernel can have an exponential
or even non-elementary dependence on the parameter [14]. Thus research on kernelization is typically concerned
with the question of whether a fixed-parameter tractable problem under consideration admits a small, and in par-
ticular apolynomial, kernel. For instance, the parameterized MINIMUM VERTEX COVER problem (does a given
graph have a vertex cover consisting ofk vertices?) admits a polynomial kernel containing at most2k vertices.
There are many fixed-parameter tractable problems for whichno polynomial kernels are known. Recently, the-
oretical tools have been developed to provide strong theoretical evidence that certain fixed-parameter tractable
problems do not admit polynomial kernels [3]. In particular, these techniques can be applied to a wide range
of graph problems parameterized by treewidth and other width parameters such as clique-width, or rank-width.
Thus, in order to get polynomial kernels, structural parameters have been suggested that are somewhat weaker
than treewidth, including the vertex cover number, max-leaf number, and neighborhood diversity [13,21]. The
general aim is to find a parameter that admits a polynomial kernel while being as general as possible.

We extend this line of research by using results from modulardecompositions and rank-width to introduce
new structural parameters for which large classes of problems have polynomial kernels. Specifically, we study
the rank-width-d cover number, which is a special case of aC-cover number(see Section 3 for definitions). We
establish the following result which is an important prerequisite for our kernelization results.

Theorem 1. For every constantd, a smallest rank-width-d cover of a graph can be computed in polynomial time.
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Hence, for graph problems parameterized by rank-width-d cover number, we can always compute the pa-
rameter in polynomial time. The proof of Theorem 1 relies on acombinatorial property of modules of bounded
rank-width that amounts to a variant of partitivity [8].

Our kernelization results take the shape ofalgorithmic meta-theorems, stated in terms of the evaluation of
formulas of monadic second order logic (MSO) on graphs. Monadic second order logic over graphs extends first
order logic by variables that may range over sets of vertices(sometimes referred to as MSO1 logic). Specifically,
for an MSO formulaϕ, our first meta-theorem applies to all problems of the following shape, which we simply
call MSO model checkingproblems.

MSO-MCϕ

Instance: A graphG.
Question: DoesG |= ϕ hold?

Many NP-hard graph problems can be naturally expressed as MSO model checking problems, for instance IN-
DEPENDENTDOMINATING SET, c-COLORING, andc-DOMATIC NUMBER.

Theorem 2. LetC be a graph class of bounded rank-width. Every MSO model checking problem, parameterized
by theC-cover number of the input graph, has a polynomial kernel with a linear number of vertices.

While MSO model checking problems already capture many important graph problems, there are some well-
known optimization problems on graphs that cannot be captured in this way, such as MINIMUM VERTEX COVER,
M INIMUM DOMINATING SET, and MAXIMUM CLIQUE. Many such optimization graph problems can be stated
in the following way. Letϕ = ϕ(X) be an MSO formula with one free set variableX and♦ ∈ {≤,≥}.

MSO-OPT♦ϕ
Instance: A graphG and an integerr ∈ N.
Question: Is there a setS ⊆ V (G) such thatG |= ϕ(S) and|S| ♦ r?

We call problems of this formMSO optimization problems. MSO optimization problems form a large fragment
of the so-calledLinEMSOproblems [2]. There are dozens of well-known graph problemsthat can be expressed
as MSO optimization problems.

We establish the following result.

Theorem 3. LetC be a graph class of bounded rank-width. Every MSO optimization problem, parameterized by
theC-cover number of the input graph, has a polynomial bikernel with a linear number of vertices.

In fact, the obtained bikernel is an instance of an annotatedvariant of the original MSO optimization prob-
lem [1]. Hence, Theorem 3 provides a polynomial kernel for anannotated version of the original MSO optimiza-
tion problem.

For obtaining the kernel for MSO model checking problems we proceed as follows. First we compute a
smallest rank-width-d cover of the input graphG in polynomial time. Second, we compute for each module a
small representative of constant size. Third, we replace each module with a constant size module, which results in
the kernel. For the MSO optimization problems we proceed similarly. However, in order to represent a possibly
large module with a small module of constant size, we need to keep the information how much a solution projected
on a module contributes to the full solution. We provide thisinformation by means of annotations to the kernel.

We would like to point out that a class of graphs has bounded rank-width iff it has bounded clique-width iff it
has bounded Boolean-width [6]. Hence, we could have equivalently stated the theorems in terms of clique-width
or Boolean width. Furthermore we would like to point out thatthe theorems hold also for some classesC where
we do not know whetherC can be recognized in polynomial time, and where we do not knowhow to compute
the partition in polynomial time. For instance, the theorems hold ifC is a graph class of bounded clique-width (it
is not known whether graphs of clique-width at most4 can be recognized in polynomial time).

2 Preliminaries

The set of natural numbers (that is, positive integers) willbe denoted byN. For i ∈ N we write [i] to denote the
set{1, . . . , i}.

2



Graphs. We will use standard graph theoretic terminology and notation (cf. [10]). A moduleof a graphG =
(V,E) is a nonempty setX ⊆ V such that for each vertexv ∈ V \ X it holds that either no element ofX is
a neighbor ofv or every element ofX is a neighbor ofv. We say two modulesX,Y ⊆ V areadjacentif there
are verticesx ∈ X andy ∈ Y such thatx andy are adjacent. Amodular partitionof a graphG is a partition
{U1, . . . , Uk} of its vertex set such thatUi is a module ofG for eachi ∈ [k].

Monadic Second-Order Logic on Graphs.We assume that we have an infinite supply of individual variables,
denoted by lowercase lettersx, y, z, and an infinite supply of set variables, denoted by uppercase lettersX,Y, Z.
Formulasof monadic second-order logic(MSO) are constructed from atomic formulasE(x, y),X(x), andx = y
using the connectives¬ (negation),∧ (conjunction) and existential quantification∃x over individual variables as
well as existential quantification∃X over set variables. Individual variables range over vertices, and set variables
range over sets of vertices. The atomic formulaE(x, y) expresses adjacency,x = y expresses equality, andX(x)
expresses that vertexx in the setX . From this, we define the semantics of monadic second-order logic in the
standard way (this logic is sometimes called MSO1).

Free and bound variablesof a formula are defined in the usual way. Asentenceis a formula without free
variables. We writeϕ(X1, . . . , Xn) to indicate that the set of free variables of formulaϕ is {X1, . . . , Xn}. If
G = (V,E) is a graph andS1, . . . , Sn ⊆ V we writeG |= ϕ(S1, . . . , Sn) to denote thatϕ holds inG if the
variablesxi are interpreted by the verticesvi and the variablesXj are interpreted by the setsSj (i ∈ [n], j ∈ [m]).

We review MSOtypesandgamesroughly following the presentation in [22]. Thequantifier rankof an MSO
formulaϕ is defined as the nesting depth of quantifiers inϕ. For non-negative integersq andl, let MSOq,l consist
of all MSO formulas of quantifier rank at mostq with free set variables in{X1, . . . , Xl}.

Letϕ = ϕ(X1, . . . , Xl) andψ = ψ(X1, . . . , Xl) be MSO formulas. We sayϕ andψ are equivalent, written
ϕ ≡ ψ, if for all graphsG andU1, . . . , Ul ⊆ V (G), G |= ϕ(U1, . . . , Ul) if and only if G |= ψ(U1, . . . , Ul).
Given a setF of formulas, letF/≡ denote the set of equivalence classes ofF with respect to≡. The following
statement has a straightforward proof using normal forms (see Theorem 7.5 in [22] for details).

Fact 1. Let q and l be non-negative integers. The set MSOq,l/≡ is finite, and givenq and l one can effectively
compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integersq and l the system of representatives of MSOq,l/≡
given by Fact 1 is fixed.

Definition 4 (MSO Type). Letq, l be a non-negative integers. For a graphG and anl-tupleU of sets of vertices
ofG, we definetypeq(G,U) as the set of formulasϕ ∈ MSOq,l such thatG |= ϕ(U). We calltypeq(G,U ) the
MSOrank-q type ofU in G.

It follows from Fact 1 that up to logical equivalence, every type contains only finitely many formulas. This allows
us to represent types using MSO formulas as follows.

Lemma 5. Let q and l be non-negative integer constants, letG be a graph, and letU be anl-tuple of sets of
vertices ofG. One can effectively compute a formulaΦ ∈ MSOq,l such that for any graphG′ and anyl-tupleU ′ of
sets of vertices ofG′ we haveG′ |= Φ(U ′) if and only iftypeq(G,U ) = typeq(G

′,U ′). Moreover, ifG |= ϕ(U )
can be decided in polynomial time for any fixedϕ ∈ MSOq,l thenΦ can be computed in time polynomial in
|V (G)|.

Proof. Let R be a system of representatives of MSOq,l/≡ given by Fact 1. Becauseq and l are constant, we
can consider both the cardinality ofR and the time required to compute it as constants. LetΦ ∈ MSOq,l be
the formula defined asΦ =

∧

ϕ∈S ϕ ∧
∧

ϕ∈R\S ¬ϕ, whereS = {ϕ ∈ R : G |= ϕ(U ) }. We can computeΦ
by decidingG |= ϕ(U ) for eachϕ ∈ R. Since the number of formulas inR is a constant, this can be done in
polynomial time ifG |= ϕ(U ) can be decided in polynomial time for any fixedϕ ∈ MSOq,l.

LetG′ be an arbitrary graph andU ′ anl-tuple of subsets ofV (G′). We claim thattypeq(G,U) = typeq(G
′,U ′)

if and only if G′ |= Φ(U ′). SinceΦ ∈ MSOq,l the forward direction is trivial. For the converse, assume
typeq(G,U ) 6= typeq(G

′,U ′). First supposeϕ ∈ typeq(G,U) \ typeq(G
′,U ′). The setR is a system of repre-

sentatives of MSOq,l/≡ , so there has to be aψ ∈ R such thatψ ≡ ϕ. ButG′ |= Φ(U ′) impliesG′ |= ψ(U ′)
by construction ofΦ and thusG′ |= ϕ(U ′), a contradiction. Now supposeϕ ∈ typeq(G

′,U ′) \ typeq(G,U).
An analogous argument proves that there has to be aψ ∈ R such thatψ ≡ ϕ andG′ |= ¬ψ(U ′). It follows that
G′ 6|= ϕ(U ′), which again yields a contradiction. ⊓⊔
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Definition 6 (Partial isomorphism). LetG,G′ be graphs, and letV = (V1, . . . , Vl) andU = (U1, . . . , Ul)
be tuples of sets of vertices withVi ⊆ V (G) andUi ⊆ V (G′) for eachi ∈ [l]. Let v = (v1, . . . , vm) and
u = (u1, . . . , um) be tuples of vertices withvi ∈ V (G) andui ∈ V (G′) for eachi ∈ [m]. Then(v,u) defines a
partial isomorphism between(G,V ) and(G′,U) if the following conditions hold:

– For everyi, j ∈ [m],

vi = vj ⇔ ui = uj andvivj ∈ E(G) ⇔ uiuj ∈ E(G′).

– For everyi ∈ [m] andj ∈ [l],

vi ∈ Vj ⇔ ui ∈ Uj.

Definition 7. LetG andG′ be graphs, and letV0 be ak-tuple of subsets ofV (G) and letU0 be ak-tuple of
subsets ofV (G′). Letq be a non-negative integer. Theq-round MSO game onG andG′ starting from(V0,U0) is
played as follows. The game proceeds in rounds, and each round consists of one of the following kinds of moves.

– Point move The spoiler picks a vertex in eitherG or G′; the duplicator responds by picking a vertex in the
other graph.

– Set move The spoiler picks a subset ofV (G) or a subset ofV (G′); the duplicator responds with a subset of
the vertex set of the other graph.

Let v1, . . . , vm ∈ V (G) and u1, . . . , um ∈ V (G′) be the point moves played in theq-round game, and let
V1, . . . , Vl ⊆ V (G′) andU1, . . . , Ul ⊆ V (G) be the set moves played in theq-round game, so thatl +m = q
and moves belonging to same round have the same index. Then the duplicator wins the game if(v,u) is a

partial isomorphism of(G,V0V ) and(G′,U0U). If duplicator has a winning strategy, we write(G,V0) ≡MSO
q

(G′,U0).

Theorem 8 ([22], Theorem 7.7).Given two graphsG andG′ and twol-tuplesV0,U0 of sets of vertices ofG
andG′, we have

typeq(G,V0) = typeq(G,U0) ⇔ (G,V0) ≡
MSO
q (G′,U0).

Fixed-Parameter Tractability and Kernels.A parameterized problemP is a subset ofΣ∗ × N for some finite
alphabetΣ. For a problem instance(x, k) ∈ Σ∗×Nwe callx the main part andk the parameter. A parameterized
problemP is fixed-parameter tractable(FPT) if a given instance(x, k) can be solved in timeO(f(k) · p(|x|))
wheref is an arbitrary computable function ofk andp is a polynomial in the input size|x|.

A bikernelizationfor a parameterized problemP ⊆ Σ∗ ×N into a parameterized problemQ ⊆ Σ∗ ×N is an
algorithm that, given(x, k) ∈ Σ∗ × N, outputs in time polynomial in|x| + k a pair(x′, k′) ∈ Σ∗ × N such that
(i) (x, k) ∈ P if and only if (x′, k′) ∈ Q and (ii) |x′| + k′ ≤ g(k), whereg is an arbitrary computable function.
The reduced instance(x′, k′) is thebikernel. If P = Q, the reduction is called akernelizationand (x′, k′) a
kernel. The functiong is called thesizeof the (bi)kernel, and ifg is a polynomial then we say thatP admits a
polynomial (bi)kernel.

It is well known that every fixed-parameter tractable problem admits a generic kernel, but the size of this
kernel can have an exponential or even non-elementary dependence on the parameter [11]. Since recently there
have been workable tools available for providing strong theoretical evidence that certain parameterized problems
do not admit a polynomial kernel [3,23].

Rank-widthThe graph invariant rank-width was introduced by Oum and Seymour [24] with the original intent of
investigating the graph invariant clique-width. It later turned out that rank-width itself is a useful parameter, with
several advantages over clique-width.

A set functionf : 2M → Z is calledsymmetricif f(X) = f(M \ X) for all X ⊆ M . For a symmetric
functionf : 2M → Z on a finite setM , abranch-decompositionof f is a pair(T, µ) whereT tree of maximum
degree 3 andµ :M → {t : t is a leaf ofT} is a bijective function. For an edgee of T , the connected components
of T \ e induce a bipartition(X,Y ) of the set of leaves ofT . Thewidth of an edgee of a branch-decomposition
(T, µ) is f(µ−1(X)). Thewidth of (T, µ) is the maximum width over all edges ofT . Thebranch-widthof f
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vcn nd rwc1 rwc2 rwc3 · · · rw

tw

Fig. 1.Relationship between graph invariants: the vertex cover number (vcn), the neighborhood diversity (nd), the rank-width-
d cover number (rwcd), the rank-width (rw), and the treewidth (tw). An arrow fromA toB indicates that for any graph class
for whichB is bounded alsoA is bounded.

is the minimum width over all branch-decompositions off . If |M | ≤ 1, then we define the branch-width off
asf(∅). A natural application of this definition is the branch-width of a graph, as introduced by Robertson and
Seymour [?], whereM = E(G), andf the connectivity function ofG.

There is, however, another interesting application of the aforementioned general notions, in which we consider
the vertex setV (G) =M of a graphG as the ground set.

For a graphG andU,W ⊆ V (G), letAG[U,W ] denote theU ×W -submatrix of the adjacency matrix over
the two-element fieldGF(2), i.e., the entryau,w, u ∈ U andw ∈ W , of AG[U,W ] is 1 if and only if {u,w} is
an edge ofG. Thecut-rankfunctionρG of a graphG is defined as follows: For a bipartition(U,W ) of the vertex
setV (G), ρG(U) = ρG(W ) equals the rank ofAG[U,W ] overGF(2). A rank-decompositionandrank-width
of a graphG is the branch-decomposition and branch-width of the cut-rank functionρG of G onM = V (G),
respectively.

Theorem 9 ([20]). Let k ∈ N be a constant andn ≥ 2. For an n-vertex graphG, we can output a rank-
decomposition of width at mostk or confirm that the rank-width ofG is larger thank in timeO(n3).

Theorem 10 ([18]).Let d ∈ N be a constant and letϕ andψ = ψ(X) be fixed MSO formulas. Given a graph
G with rw(G) ≤ d, one can decide whetherG |= ϕ in polynomial time. Moreover, a setS ⊆ V (G) of minimum
(maximum) cardinality such thatG |= ψ(S) can be found in polynomial time, if one exists.

3 Rank-width Covers

LetG1 be the trivial single-vertex graph, and letC be a graph class such thatG1 ∈ C. We define aC-cover ofG as
a modular partition{U1, . . . , Uk} of V (G) such that the induced subgraphG[Ui] belongs to the classC for each
i ∈ [k]. Accordingly, theC-cover numberof G is the size of a smallestC-cover ofG.

Of special interest to us are the classesRd of graphs ofrank-widthat mostd. We call theRd-cover number
also therank-width-d cover number. If C is the class of complete and edgeless graphs, then theC-cover number
equals the neighborhood diversity [21], and clearlyC ( R1. Figure 1 shows the relationship between the rank-
width-d cover number and some other graph invariants.

We state some further properties of rank-width-d covers.

Proposition 11. Let vcn, nd, and rw denote the vertex cover number, the neighborhood diversity, and the rank-
width of a graphG, respectively. Then the following (in)equalities hold foranyd ∈ N:

1. rwcd(G) ≤ nd(G) ≤ 2vcn(G),
2. if d ≥ rw(G), then|rwcd(G)| = 1.

Proof. (1) The neighborhood diversity of a graph is also a rank-width-1 cover. The neighborhood diversity is
known to be upper-bounded by2vcn(G) [21]. (2) follows immediately from the definition of rank-width-d covers.
⊓⊔

3.1 Finding the Cover

Next we state several properties of modules of graphs. Thesewill be used to obtain a polynomial algorithm for
finding smallest rank-width-d covers.

Thesymmetric differenceof setsA,B isA△B = (A \ B) ∪ (B \ A). SetsA,B overlapif A ∩ B 6= ∅ but
neitherA ⊆ B norB ⊆ A.
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Definition 12. Let S ⊆ 2S be a family of subsets of a setS. We callS partitive if it satisfies the following
properties:

1. S ∈ S, ∅ /∈ S, and{x} ∈ S for eachx ∈ S.
2. For every pair of overlapping subsetsA,B ∈ S, the setsA ∪ B,A ∩ B,A△B,A \ B, andB \ A are

contained inS.

Theorem 13 ([8]).The family of modules of a graphG is partitive.

Lemma 14 ([5]).LetG be a graph andx, y ∈ V (G). There is a unique minimal (with respect to set inclusion)
moduleM ofG such thatx, y ∈M , andM can be computed in timeO(|V (G)|2).

Lemma 15. Letd ∈ N be a constant. LetG be a graph and letM1,M2 be modules ofG such thatM1∩M2 6= ∅
andmax(rw(G[M1]), rw(G[M2])) ≤ d. ThenM1 ∪M2 is a module ofG andrw(G[M1 ∪M2]) ≤ d.

Proof. If M1 ⊆ M2 or M2 ⊆ M1 the result is immediate. SupposeM1 andM2 overlap and letM11 = M1 \
M2,M22 = M2 \M1, andM12 = M1 ∩M2. It follows from Theorem 13 that these sets are modules ofG.
Let v11 ∈ M11, v22 ∈ M22, andv12 ∈ M12. We show thatrw(G[M1 ∪M2]) ≤ d. By assumption, bothG[M1]
andG[M2] have rank-width at mostd. Since rank-width is preserved by taking induced subgraphs, the graphs
G11 = G[M11 ∪ {v12}], G12 = G[M12 ∪ {v22}], andG22 = G[M22 ∪ {v12}] also have rank-width at mostd.
Let T11 = (T11, µ11), T12 = (T12, µ12), andT22 = (T22, µ22) be witnessing rank decompositions ofG11, G12,
andG22, respectively.

We construct a rank decompositionT = (T, µ) of G[M1 ∪M2] as follows. Letl22 be the leaf (note thatµ12

is bijective) ofT12 such thatµ12(v22) = l22. Moreover, letl12 and l′12 be the leaves ofT11 andT22 such that
µ11(v12) = l12 andµ22(v12) = l′12, respectively. We obtainT from T12 by adding disjoint copies ofT11 andT22
and then identifyingl22 with the copies ofl12 andl′12. SinceT11, T12, andT22 are subcubic, so isT .

We define the mappingµ :M1 ∪M2 → { t : t is a leaf ofT } by

µ(v) =











µ12(v) if v ∈M12,

c(µ11(v)) if v ∈M11,

c(µ22(v)) otherwise,

wherec maps nodes inT11 ∪ T22 to their copies inT . The mappingsµ11, µ12, andµ22 are bijections andc is
injective, soµ is injective. By construction, the image ofM1 ∪M2 underµ is the set of leaves ofT , soµ is a
bijection. ThusT = (T, µ) is a rank decomposition ofG[M1 ∪M2].

We prove that the width ofT is at mostd. Given a rank decompositionT ∗ = (T ∗, µ∗) and an edgee ∈ T ∗,
the connected components ofT ∗ \ {e} induce a bipartition(X,Y ) of the leaves ofT ∗. We setf : (T ∗, e) 7→
(µ∗−1(X), µ∗−1(Y )). Take any edgee of T . There is a natural bijectionβ from the edges inT to the edges of
T11 ∪ T12 ∪ T22. Accordingly, we distinguish three cases fore′ = β(e):

1. e′ ∈ T11. Let (U,W ) = f(T11, e′). Without loss of generality assume thatv12 ∈ W . Then by construction
of T , we havef(T , e) = (U,W ∪M2). Pick anyu ∈ U ⊆M11 andv ∈M2 \W . SinceM2 is a module of
G with v, v12 ∈M2 butu /∈M2 we haveAG(u, v) = AG(u, v12). As a consequence,AG[U,W ∪M2] can
be obtained fromAG[U,W ] by copying the column corresponding tov12. This does not increase the rank of
the matrix.

2. e′ ∈ T22. This case is symmetric to case 1, withM22 andM1 taking the roles ofM11 andM2, respectively.
3. e′ ∈ T12. Let (U,W ) = f(T12, e′). Without loss of generality assume thatv22 ∈ W . Thenf(T , e) =

(U,W ∪M11 ∪M22). Letu ∈ U ⊆M12 andv ∈M22. SinceM1 is a module andu ∈M1 butv, v22 /∈M1,
we must haveAG(u, v) = AG(u, v22), so one can simply copy the column corresponding tov22. Now
considerw ∈ M11. Supposewu ∈ E(G). Sinceu, v22 ∈ M2 butw /∈ M2, we must havewv22 ∈ E(G)
becauseM2 is a module. Then sincew, u ∈ M1 andv22 /∈ M1 we must haveuv22 ∈ E(G) because
M1 is a module. A symmetric argument proves thatuv22 ∈ E(G) implieswu ∈ E(G). It follows that
AG(u,w) = AG(u, v22). So againAG[U,W ∪M11 ∪M22] can be obtained fromAG[U,W ] by copying
columns, and thus the two matrices have the same rank.
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Sinceβ is bijective, this proves that the rank of any bipartite adjacency matrix induced by removing an edge
e ∈ T is bounded byd. We conclude that the width ofT is at mostd and thusrw(G[M1 ∪M2]) ≤ d. ⊓⊔

Definition 16. LetG be a graph andd ∈ N. We define a relation∼G
d onV (G) by lettingv ∼G

d w if and only if
there is a moduleM ofG with v, w ∈ M andrw(G[M ]) ≤ d. We drop the superscript from∼G

d if the graphG
is clear from context.

Proposition 17. For every graphG andd ∈ N the relation∼d is an equivalence relation, and each equivalence
classU of ∼d is a module ofG with rw(G[U ]) ≤ d.

Proof. LetG be a graph andd ∈ N. For everyv ∈ V (G), the singleton{v} is a module ofG, so∼d is reflexive.
Symmetry of∼d is trivial. For transitivity, letu, v, w ∈ V (G) such thatu ∼d v andv ∼d w. Then there are
modulesM1,M2 of G such thatu, v ∈ M1, v, w ∈ M2, andrw(G[M1]), rw(G[M2]) ≤ d. By Lemma 15
M1 ∪M2 is a module ofG with rw(G[M1 ∪M2]) ≤ d. In combination withu,w ∈ M1 ∪M2 that implies
u ∼d w. This concludes the proof that∼d is an equivalence relation.

Now let v ∈ V (G) and letU = [v]∼d
. For eachu ∈ U there is a moduleWu of G with u, v ∈ Wu and

rw(G[Wu]) ≤ d. By Lemma 15,W =
⋃

u∈U Wu is a module ofG andrw(G[W ]) ≤ d. Clearly,[v]∼d
⊆ W .

On the other hand,u ∈ W impliesv ∼d u by definition of∼d, soW ⊆ [v]∼d
. That is,W = [v]∼d

. ⊓⊔

Corollary 18. LetG be a graph andd ∈ N. The equivalence classes of∼d form a smallest rank-width-d cover
ofG.

Proof. Let U = {U1, . . . , Uk} be the set of equivalence classes of∼d. It is immediate from Proposition 17 that
U is a rank-width-d cover ofG. Let V = {V1, . . . , Vj} be a partition ofV (G) with j < k. By the pigeonhole
principle, there have to be verticesv1, v2 ∈ V (G) and indicesi1, i2 ∈ [k], i ∈ [j] such thatv1, v2 ∈ Vj but
v1 ∈ Ui1 andv2 ∈ Ui2 , wherei1 6= i2. Thusv1 ≁d v2, so there is no moduleM of V (G) such thatv1, v2 ∈ M
andrw(G[M ]) ≤ d. In particular,Vi is not a module orrw(G[Vi]) > d. SoV is not a rank-width-d cover ofG.
⊓⊔

Proposition 19. Let d ∈ N be a constant. Given a graphG and two verticesv, w ∈ V (G), we can decide
whetherv ∼d w in polynomial time.

Proof. By Lemma 14 we can compute the unique minimal (with respect toset inclusion) moduleM containingv
andw in timeO(|V (G)|2). Since rank-width is preserved for induced subgraphs, there is a moduleM ′ containing
v andw with rw(G[M ′]) ≤ d if and only if rw(G[M ]) ≤ d. By Theorem 9 this can be decided in time
O(|V (G)|3). ⊓⊔

Proof (of Theorem 1).Let d ∈ N be a constant. Given a graphG, we can compute the set of equivalence classes
of ∼d by testing whetherv ∼d w for each pair of verticesv, w ∈ V (G). By Proposition 19, this can be done in
polynomial time, and by Corollary 18,V (G)/∼d is a smallest rank-width-d cover ofG. ⊓⊔

4 Kernels for MSO Model Checking

In this section, we show that every MSO model checking problem admits a polynomial kernel when parameterized
by theC-cover number of the input graph, whereC is some recursively enumerable class of graphs satisfying the
following properties:

(I) C contains the single-vertex graph, and aC-cover of a graphG with minimum cardinality can be computed
in polynomial time.

(II) There is an algorithmA that decides whetherG |= ϕ in time polynomial in|V (G)| for any fixed MSO
sentenceϕ and any graphG ∈ C.
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LetG be a graph andU ⊆ V (G). Letv be anm-tuple of vertices ofG, and letV be anl-tuple of sets of vertices
of G. We writeV |U = (V1 ∩ U, . . . , Vl ∩ U) to refer to the elementwise intersection ofV with U . Similarly, we
let v|U = (vi1 , . . . , vit), t ≤ m denote the subsequence of elements fromv contained inU . If {U1, . . . , Uk} is
a modular partition ofG andi ∈ [k] we will abuse notation and writev|i = v|Ui

andV |i = V Ui
if there is no

ambiguity about what partition the index belongs to.

Definition 20 (Congruent). Let q and l be non-negative integers and letG andG′ be graphs with modular
partitions {M1, . . . ,Mk} and {M ′

1, . . . ,M
′
k}, respectively. LetV0 be an l-tuple of subsets ofV (G) and let

U0 be anl-tuple of subsets ofV (G′). We say(G,M ,V0) and (G′,M ′,U0) are q-congruentif the following
conditions are met:

1. For everyi, j ∈ [k] with i 6= j,Mi andMj are adjacent inG if and only ifM ′
i andM ′

j are adjacent inG′.
2. For eachi ∈ [k], typeq(G[Mi],V0|i) = typeq(G

′[M ′
i ],U0|i)

Lemma 21. Letq andl be non-negative integers and letG andG′ be graphs with modular partitions{M1, . . . ,Mk}
and {M ′

1, . . . ,M
′
k}. LetV0 be anl-tuple of subsets ofV (G) and letU0 be anl-tuple of subsets ofV (G′). If

(G,M ,V0) and(G′,M ′,U0) areq-congruent, thentypeq(G,V0) = typeq(G
′,U0).

Proof. For i ∈ [k], we writeGi = G[Mi] andG′
i = G′[M ′

i ]. By Theorem 8, Condition 2 of Definition 20

is equivalent to(Gi,V0|i) ≡MSO
q (G′

i,U0|i). That is, for eachi ∈ [k], duplicator has a winning strategyπi
in the q-round MSO game played onGi andG′

i starting from(V0|i,U0|i). We construct a strategy witnessing

(G,V0) ≡MSO
q (G′,U0) by aggregating duplicator’s moves from thesek games in the following way:

1. Suppose spoiler makes a set moveW and assume without loss of generality thatW ⊆ V (G). Fori ∈ [k], let
Wi = Mi ∩W , and letW ′

i be duplicator’s response toWi according toπi. Then duplicator responds with
W ′ = ∪k

i=1W
′
i .

2. Suppose spoiler makes a point moves and again assume without loss of generality thats ∈ V (G). Then
s ∈Mi for somei ∈ [k]. Duplicator responds withs′ ∈M ′

i according toπi.

Assume duplicator plays according to this strategy and consider a play of theq-round MSO game onG andG′

starting from(V0,U0). Let v1, . . . , vm ∈ V (G) andu1, . . . , um ∈ V (G′) be the point moves andV1, . . . , Vl ⊆
V (G′) andU1, . . . , Ul ⊆ V (G) be the set moves, so thatl+m = q and the moves made in the same round have
the same index. We claim that(v,u) defines a partial isomorphism between(G,V0V ) and(G′,U0U).

– Let j1, j2 ∈ [m] and leti1, i2 ∈ [k] such thatvj1 ∈ Mi1 andvj2 ∈ Mi2 . Supposei1 = i2 = i. Since
duplicator plays according to a winning strategy in the gameonGi andG′

i, the restriction(v|i,u|i) defines
a partial isomorphism between(Gi, (V0V )|i) and(G′

i, (U0U)|i). It follows that(vj1 , vj2) ∈ E(G) if and
only if (uj1 , uj2) ∈ E(G′) andvj1 = vj2 if and only if uj1 = uj2 . Now supposei1 6= i2. Thenvj1 6= vj2
and alsouj1 6= uj2 sinceuj1 ∈ M ′

i1
anduj2 ∈ M ′

i2
by choice of duplicator’s strategy. By congruence,Mi1

andMi2 are adjacent inG if and only ifM ′
i1

andM ′
i2

are adjacent inG′, so we must have(vj1 , vj2) ∈ E(G)
if and only if (uj1 , uj2) ∈ E(G′).

– Let j ∈ [m] and leti ∈ [k] such thatvj ∈ Mi. By construction of duplicator’s strategy, we haveuj ∈ M ′
i .

Note that ifx ∈ S thenx ∈ S′ if and only if x ∈ S′|S for arbitrary setsS andS′. Combined with the fact that
(v|i,u|i) defines a partial isomorphism between(Gi, (V0V )|i) and(G′

i, (U0U)|i), this observation implies
thatvi is contained in any of the sets fromV0V if and only if ui is contained in the sets fromU0U with the
same indices.

⊓⊔

Lemma 22. Let C be a recursively enumerable graph class and letq be a non-negative integer constant. Let
G ∈ C be a graph. IfG |= ϕ can be decided in time polynomial in|V (G)| for any fixedϕ ∈ MSOq,0 then one
can in polynomial time compute a graphG′ ∈ C such that|V (G′)| is bounded by a constant andtypeq(G) =
typeq(G

′).
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Proof. By Lemma 5 we can compute a formulaΦ capturing the typeT of G in polynomial time. GivenΦ, a
graphG′ ∈ C satisfyingΦ can be effectively computed as follows. We start enumerating C and check for each
graphG′ ∈ C whetherG′ |= Φ. If this is the case, we stop and outputG′. SinceG |= Φ this procedure must
terminate eventually. FixingC and the order in which graphs are enumerated, the number of graphs we have to
check depends only onT . By Fact 1 the number of rankq-types is finite for eachq, so we can think of the total
number of checks as bounded by a constant. Moreover the time spent on each check depends only onT and the
size of the graphG′. Because the number of graphs enumerated is bounded by a constant, we can think of the
latter as bounded by a constant as well. Thus the algorithm computing a model ofΦ runs in constant time. ⊓⊔

Lemma 23. Letq be a non-negative integer constant, and letC be a recursively enumerable graph class satisfying
(II). Then given a graphG and aC-cover{U1, . . . , Uk}, one can in polynomial time compute a graphG′ with
modular partition{U ′

1, . . . , U
′
k} such that(G,U ) and(G′,U ′) areq-congruent and for eachi ∈ [k],G′[U ′

i ] ∈ C
and the number of vertices inU ′

i is bounded by a constant.

Proof. For eachi ∈ [k], we compute a graphG′
i ∈ C of constant size with the same MSO rank-q type as

Gi = G[Ui]. By Lemma 22, this can be done in polynomial time. Now letG′ be the graph obtained from the
disjoint union of the graphsG′

i for i ∈ [k] as follows. Fori ∈ [k], letU ′
i denote the set of vertices from the copy

ofG′
i. If Ui andUj are adjacent inG for i, j ∈ [k] andi 6= j, we insert an edgevw for everyv ∈ U ′

i andw ∈ U ′
i .

ThenU ′
1, . . . , U

′
k is a modular partition ofG′, and fori, j ∈ [k] andi 6= j, modulesUi andUj are adjacent inG

if and only ifU ′
i andU ′

j are adjacent inG′. It is readily verified that(G,U ) and(G′,U ′) areq-congruent. ⊓⊔

Proposition 24. Letϕ be a fixed MSO sentence. LetC be a recursively enumerable graph class satisfiying (I) and
(II). ThenMSO-MCϕ has a polynomial kernel parameterized by theC-cover number of the input graph.

Proof. LetG be a graph withC-cover numberk, and let{U1, . . . , Uk} be a smallestC-cover given by (I). Letq
be the quantifier rank ofϕ. By Lemma 23 and (II), we can in polynomial time compute a graphG′ and a modular
partition{U ′

1, . . . , U
′
k} ofG′ such that(G,U) and(G′,U ′) areq-congruent and for eachi ∈ [k], |U ′

i | is bounded
by a constant. It follows from Lemma 21 thattypeq(G) = typeq(G

′). In particular,G |= ϕ if and only ifG′ |= ϕ.
Moreover, we have|V (G′)| ∈ O(k), soG′ is a polynomial kernel. ⊓⊔

Proof (of Theorem 2).Immediate from Theorems 1, 9, and 10 in combination with Proposition 24. ⊓⊔

Corollary 25. The following problems have polynomial kernels when parameterized by the rank-width-d cover
number of the input graph:INDEPENDENTDOMINATING SET, c-COLORING, c-DOMATIC NUMBER, c-PARTITION

INTO TREES, c-CLIQUE COVER, c-PARTITION INTO PERFECTMATCHINGS, c-COVERING BY COMPLETE BI-
PARTITE SUBGRAPHS.

5 Kernels for MSO Optimization

By definition, MSO formulas can only directly capture decision problems such as3-colorability, but many prob-
lems of interest are formulated as optimization problems. The usual way of transforming decision problems into
optimization problems does not work here, since the MSO language cannot handle arbitrary numbers.

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [2] (while studying graphs of bounded
tree-width), and later Courcelle, Makowsky, and Rotics [9](for graphs of bounded clique-width), specifically ex-
tended the expressive power of MSO logic to define so-called LINEMS optimization problems, and consequently
showed the existence of efficient (parameterized) algorithms for such problems in the respective cases.

The MSO optimization problems (problems of the form MSO-OPT♦ϕ ) considered here are a streamlined and
simplified version of the formalism introduced in [9]. Specifically, we consider only a single free variableX , and
ask for a satisfying assignment ofX with minimum or maximum cardinality. To achieve our results, we need a
recursively enumerable graph classC that satisfies (I) and (II) along with the following property:

(III)Let ϕ = ϕ(X) be a fixed MSO formula. Given a graphG ∈ C, a setS ⊆ V (G) of minimum (maximum)
cardinality such thatG |= ϕ(S) can be found in polynomial time, if one exists.
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Our approach will be similar to the MSO kernelization algorithm, with one key difference: when replacing
the subgraph induced by a module, the cardinalities of subsets of a givenq-type may change, so we need to keep
track of their cardinalities in the original subgraph.

To do this, we introduce an annotated version of MSO-OPT♦ϕ . Given a graphG = (V,E), anannotationW
is a set of triples(X,Y,w) with X ⊆ V, Y ⊆ V,w ∈ N. For every setZ ⊆ V we define

W(Z) =
∑

(X,Y,w)∈W,X⊆Z,Y∩Z=∅

w.

We call the pair(G,W) anannotated graph. If the integerw is represented in binary, we can represent a triple
(X,Y,w) in space|X | + |Y | + log2(w). Consequently, we may assume that the size of the encoding ofan
annotated graph(G,W) is polynomial in|V (G)| + |W|+max(X,Y,w)∈W log2 w.

Each MSO formulaϕ(X) and♦ ∈ {≤,≥} gives rise to anannotated MSO-optimization problem.

aMSO-OPT♦ϕ
Instance: A graphG with an annotationW and an integerr ∈ N.
Question: Is there a setZ ⊆ V (G) such thatG |= ϕ(Z) andW(Z)♦ r?

Notice that any instance of MSO-OPT♦ϕ is also an instance ofaMSO-OPT♦ϕ with the trivial annotation
W = { ({v}, ∅, 1) : v ∈ V (G) }. The main result of this section is a bikernelization algorithm which transforms
any instance of MSO-OPT♦ϕ into an instance ofaMSO-OPT♦ϕ ; this kind of bikernel is called anannotated kernel
[1].

The results below are stated and proved for minimization problemsaMSO-OPT≤ϕ only. This is without loss
of generality – the proofs for maximization problems are symmetric.

Lemma 26. Letq andl be non-negative integers and letG andG′ be a graphs such thatG andG′ have the same
q + l MSO type. Then for anyl-tupleV of sets of vertices ofG, there exists anl-tupleU of sets of vertices ofG′

such thattypeq(G,V ) = typeq(G
′,U).

Proof. Suppose there exists anl-tupleV of sets of vertices ofG, and a formulaϕ = ϕ(X1, . . . , Xl) ∈ MSOq,l

such thatG |= ϕ(V1, . . . , Vl) but for everyl-tupleU of sets of vertices ofG′ we haveG′ 6|= ϕ(U1, . . . , Ul). Let
ψ = ∃X1 . . . ∃Xl ϕ. Clearly,ψ ∈ MSOq+l,0 andG |= ψ butG′ 6|= ψ, a contradiction. ⊓⊔

Lemma 27. Letϕ = ϕ(X) be a fixed MSO formula andC be a recursively enumerable graph class satisfiying
(II) and (III). Then given an instance(G, r) of MSO-OPT≤ϕ and aC-cover{U1, . . . , Uk} of G, an annotated
graph(G′,W) satisfying the following properties can be computed in polynomial time.

1. (G, r) ∈ MSO-OPT≤ϕ if and only if(G′,W , r) ∈ aMSO-OPT≤ϕ .
2. |V (G′)| ∈ O(k).
3. The encoding size of(G′,W) isO(k log(|V (G)|)).

Proof. Let q be the quantifier rank ofϕ. By Lemma 23 and (II), we can in polynomial time compute a graph
G′ and a modular partition{U ′

1, . . . , U
′
k} of G′ such that(G,U) and(G′,U ′) are(q + 1)-congruent,|U ′

i | is
bounded by a constant, andG′[U ′

i ] ∈ C for eachi ∈ [k]. To compute the annotationW , we proceed as follows.
For eachi ∈ [k], we go through all subsetsW ′ ⊆ U ′

i . By Lemma 5, we can compute a formulaΦ such that for
any graphH andW ⊆ V (H) we havetypeq(G

′[U ′
i ],W ) = typeq(H,W ) if and only ifH |= Φ(W ). Since|U ′

i |
has constant size for everyi ∈ [k], this can be done within a constant time bound. By Lemma 26 andbecause
(G,U) and(G′,U ′) are(q+1)-congruent, there has to be aW ⊆ Ui such thatGi |= Φ(W ). Using the algorithm
given by (III), we can compute a minimum-cardinality subsetW ∗ ⊆ Ui with this property in polynomial time.
We then add the triple(W ′, U ′

i \W
′, |W ∗|) toW . In total, the number of subsets processed is inO(k). From this

observation we get the desired bounds on the total runtime,|V (G′)|, and the encoding size of(G′,W).
We claim that(G′,W , r) ∈ aMSO-OPT≤ϕ if and only if (G, r) ∈ MSO-OPT≤ϕ . Suppose there is a set

W ⊆ V (G) of vertices such thatG |= ϕ(W ) and|W | ≤ r. SinceU1, . . . , Uk is a partition ofV (G), we have
W = ∪i∈[k]Wi, whereWi =W ∩Ui. For eachi ∈ [k], letW ∗

i ⊆ Ui be a subset of minimum cardinality such that
typeq(G[Ui],Wi) = typeq(G[Ui],W

∗
i ). By Lemma 26 and(q + 1)-congruence of(G,U ) and(G′,U ′), there
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is W ′
i ⊆ U ′

i for eachi ∈ [k] such thattypeq(G
′[U ′

i ],W
′
i ) = typeq(G[Ui],W

∗
i ). By construction,W contains

a triple (W ′
i , U

′
i \W

′
i , |W

∗
i |). Observe that(X,Y,w) ∈ W and(X,Y,w′) ∈ W impliesw = w′. Let W ′ =

∪i∈[k]W
′
i . Then by(q + 1)-congruence of(G,U) and(G′,U ′) and Lemma 21, we must havetypeq(G,W ) =

typeq(G
′,W ′). In particular,G′ |= ϕ(W ′). Furthermore,

W(W ′) =
∑

(W ′

i
,U ′

i
\W ′

i
,|W∗

i
|)∈W,U ′

i
∩W ′=W ′

i

|W ∗
i | ≤

∑

i∈[k]

|Wi| = |W | ≤ r.

For the converse, letW ′ ⊆ V (G′) such thatW(W ′) ≤ r andG′ |= ϕ(W ′), let W ′
i denoteW ′ ∩ U ′

i for
i ∈ [k]. By construction, there is a setWi ⊆ Ui for eachi ∈ [k] such thattypeq(G[Ui],Wi) = typeq(G

′[U ′
i ],W

′
i )

andW(W ′) =
∑

i∈[k] |Wi|. LetW = ∪i∈[k]Wi. Then by congruence and Lemma 21 we gettypeq(G,W ) =

typeq(G
′,W ′) and thusG |= ϕ(W ). Moreover,|W | = W(W ′) ≤ r. ⊓⊔

Fact 2 (Folklore). Given an MSO sentenceϕ and a graphG, one can decide whetherG |= ϕ in timeO(2nl),
wheren = |V (G)| andl = |ϕ|.

Proposition 28. Let ϕ = ϕ(X) be a fixed MSO formula, and letC be a recursively enumerable graph class
satisfying (I), (II), and (III). ThenMSO-OPT≤ϕ has a polynomial bikernel parameterized by theC-cover number
of the input graph.

Proof. Let (G, r) be an instance of MSO-OPT≤ϕ . By (I) a smallestC-cover{U1, . . . , Uk} of G can be com-
puted in polynomial time. Let(G′,W) be an annotated graph computed fromG and{U1, . . . , Uk} according to
Lemma 27. Letn = |V (G)| and suppose2k ≤ n. Then we can solve(G′,W , r) in timenc for some constantc
that only depends onϕ andC. To do this, we go through all2O(k) subsetsW of G′ and test whetherW(W ) ≤ r.
If that is the case, we check whetherG′ |= ϕ(W ). By Fact 2 this check can be carried out in timec12c2k ≤ c1n

c2

for suitable constantsc1 andc2 depending only onC andϕ. Thus we can find ac such that the entire procedure
runs in timenc whenevern is large enough. If we find a solutionW ⊆ V (G′) we return a trivial yes-instance;
otherwise, a trivial no-instance (ofaMSO-OPT≤ϕ ). Now supposen < 2k. Thenlog(n) < k and so the encoding
size ofW is polynomial ink. Thus(G′,W , r) is a polynomial bikernel. ⊓⊔

Proof (of Theorem 3).Immediate from Theorems 1, 9, and 10 when combined with Proposition 28. ⊓⊔

Corollary 29. The following problems have polynomial bikernels when parameterized by the rank-width-d cover
number of the input graph:M INIMUM DOMINATING SET, M INIMUM VERTEX COVER, M INIMUM FEEDBACK

VERTEX SET, MAXIMUM INDEPENDENT SET, MAXIMUM CLIQUE, LONGEST INDUCED PATH, MAXIMUM

BIPARTITE SUBGRAPH, M INIMUM CONNECTEDDOMINATING SET.

6 Conclusion

Recently Bodlaender et al. [4] and Fomin et al. [16] establishedmeta-kernelization theoremsthat provide poly-
nomial kernels for large classes of parameterized problems. The known meta-kernelization theorems apply to
optimization problems parameterized bysolution size. Our results are, along with very recent results parame-
terized by the modulator to constant-treedepth [17], the first meta-kernelization theorems that use astructural
parameterof the input and not the solution size. In particular, we would like to emphasize that our Theorem 3
applies to a large class of optimization problems where the solution size can be arbitrarily large.

It is also worth noting that our structural parameter, the rank-width-d cover number, provides a trade-off be-
tween the maximum rank-width of modules (the constantd) and the maximum number of modules (the parameter
k). Different problem inputs might be better suited for smaller d and largerk, others for largerd and smallerk.
This two-dimensional setting could be seen as a contribution to amultivariate complexity analysisas advocated
by Fellows et al. [13].

We conclude by mentioning possible directions for future research. We believe that some of our results can
be extended from modular partitions to partitions into splits [7].1 This would indeed result in a more general
parameter, however the precise details would still requirefurther work (one problem is that while all modules are
partitive, only strong splits have this property). Anotherdirection would then be to focus on polynomial kernels
for problems which cannot be described by MSO logic, such as HAMILTONIAN PATH or CHROMATIC NUMBER.

1 We thank Sang-il Oum for pointing this out to us.
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