Abstract
Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09) and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by solution size. We present meta-kernelization theorems that use structural parameters of the input and not the solution size. Let \(\mathcal{C}\) be a graph class. We define the \(\mathcal{C}\) - cover number of a graph to be the smallest number of modules the vertex set can be partitioned into such that each module induces a subgraph that belongs to the class \(\mathcal{C}\).
We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the \(\mathcal{C}\)- cover number for any fixed class \(\mathcal{C}\) of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean-width). Many graph problems such as c -Coloring, c -Domatic Number and c -Clique Cover are covered by this meta-kernelization result.
Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices.
Research supported by the European Research Council (ERC), project COMPLEX REASON 239962.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. of Computer and System Sciences 75(8), 423–434 (2009)
Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society (2009)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)
Bui-Xuan, B.-M., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of a general modular decomposition theory. Discr. Appl. Math. 157(9), 1993–2009 (2009)
Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)
Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)
Chein, M., Habib, M., Maurer, M.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)
Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)
Downey, R., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. AMS-DIMACS, vol. 49, pp. 49–99. American Mathematical Society (1999)
Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)
Fellows, M.R., Jansen, B.M., Rosamond, F.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European J. Combin. 34(3), 541–566 (2013)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)
Fomin, F.V.: Kernelization. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 107–108. Springer, Heidelberg (2010)
Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: Approximation, kernelization and optimal fpt algorithms. In: FOCS 2012, pp. 470–479. IEEE Computer Society (2012)
Gajarský, J., Hliněný, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. CoRR, abs/1302.6863 (2013)
Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discr. Appl. Math. 158(7), 851–867 (2010)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(2), 31–45 (2007)
Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
Libkin, L.: Elements of Finite Model Theory. Springer (2004)
Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)
Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)
Rosamond, F.: Table of races. In: Parameterized Complexity Newsletter, pp. 4–5 (2010), http://fpt.wikidot.com/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganian, R., Slivovsky, F., Szeider, S. (2013). Meta-kernelization with Structural Parameters. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)