Skip to main content

Meta-kernelization with Structural Parameters

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09) and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by solution size. We present meta-kernelization theorems that use structural parameters of the input and not the solution size. Let \(\mathcal{C}\) be a graph class. We define the \(\mathcal{C}\) - cover number of a graph to be the smallest number of modules the vertex set can be partitioned into such that each module induces a subgraph that belongs to the class \(\mathcal{C}\).

We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the \(\mathcal{C}\)- cover number for any fixed class \(\mathcal{C}\) of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean-width). Many graph problems such as c -Coloring, c -Domatic Number and c -Clique Cover are covered by this meta-kernelization result.

Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices.

Research supported by the European Research Council (ERC), project COMPLEX REASON 239962.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society (2009)

    Google Scholar 

  5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Bui-Xuan, B.-M., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of a general modular decomposition theory. Discr. Appl. Math. 157(9), 1993–2009 (2009)

    Google Scholar 

  7. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chein, M., Habib, M., Maurer, M.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)

    Google Scholar 

  13. Downey, R., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. AMS-DIMACS, vol. 49, pp. 49–99. American Mathematical Society (1999)

    Google Scholar 

  14. Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Fellows, M.R., Jansen, B.M., Rosamond, F.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European J. Combin. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)

    Google Scholar 

  17. Fomin, F.V.: Kernelization. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 107–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: Approximation, kernelization and optimal fpt algorithms. In: FOCS 2012, pp. 470–479. IEEE Computer Society (2012)

    Google Scholar 

  19. Gajarský, J., Hliněný, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. CoRR, abs/1302.6863 (2013)

    Google Scholar 

  20. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discr. Appl. Math. 158(7), 851–867 (2010)

    Article  MATH  Google Scholar 

  21. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(2), 31–45 (2007)

    Article  Google Scholar 

  22. Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

    Google Scholar 

  25. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosamond, F.: Table of races. In: Parameterized Complexity Newsletter, pp. 4–5 (2010), http://fpt.wikidot.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganian, R., Slivovsky, F., Szeider, S. (2013). Meta-kernelization with Structural Parameters. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics