Abstract
So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. The ordered pathwidth of a proof is shown to be roughly the same as its formula space. Length-space lower bounds for R(k)-refutations are generalized to arbitrary infinity axioms and strengthened in that the space measure is relaxed to ordered treewidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002)
Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J. of Computer and System Sciences 74(3), 323–334 (2008)
Bang-Jensen, J., Gutin, G.: Digraphs, 2nd edn. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London (2009)
Ben-Sasson, E.: Size-space tradeoffs for resolution. SIAM J. Comput. 38(6), 2511–2525 (2009)
Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and trade-offs via substitutions. ECCC 17, 125 (2010)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)
Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)
Dantchev, S., Riis, S.: On relativisation and complexity gap for resolution-based proof systems. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 142–154. Springer, Heidelberg (2003)
Esteban, J.L., Galesi, N., Messner, J.: On the complexity of resolution with bounded conjunctions. Theoretical Computer Science 321(2-3), 347–370 (2004)
Esteban, J.L., Torán, J.: Space bounds for resolution. Information and Computation 171(1), 84–97 (2001)
Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory, Series B 82(1), 138–154 (2001)
Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42(6), 345–350 (1992)
Kleine Büning, H., Lettman, T.: Propositional logic: deduction and algorithms. Cambridge University Press, Cambridge (1999)
Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory. Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge Univ. Press (1995)
Krajíček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-2), 123–140 (2001), Dedicated to the memory of Jerzy Łoś
Krajíček, J.: Combinatorics of first order structures and propositional proof systems. Archive for Mathematical Logic 43(4), 427–441 (2004)
Maciel, A., Pitassi, T., Woods, A.R.: A new proof of the weak pigeonhole principle. J. of Computer and System Sciences 64(4), 843–872 (2002)
Mazala, R.: 2 Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002)
Nordström, J.: Narrow proofs be spacious: separating space and width in resolution. SIAM J. Comput. 39(1), 59–121 (2009)
Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Methods in Mathematical Logic. LNM, vol. 1130, pp. 317–340 (1985)
Razborov, A.: Resolution lower bounds for the weak functional pigeonhole principle. Theoretical Computer Science 303(1), 233–243 (2003)
Riis, S.: A complexity gap for tree resolution. Comput. Compl. 10(3), 179–209 (2001)
Segerlind, N.: The complexity of propositional proofs. Bull. of Symbolic Logic 13(4), 417–481 (2007)
Segerlind, N., Buss, S., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM J. Comput. 33(5), 1171–1200 (2004)
Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33(3), 277–280 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, M., Szeider, S. (2013). Revisiting Space in Proof Complexity: Treewidth and Pathwidth. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)