Skip to main content

Abstract

In 1967, Moon and Moser proved a tight bound on the critical density of squares in squares: any set of squares with a total area of at most 1/2 can be packed into a unit square, which is tight. The proof requires full knowledge of the set, as the algorithmic solution consists in sorting the objects by decreasing size, and packing them greedily into shelves. Since then, the online version of the problem has remained open; the best upper bound is still 1/2, while the currently best lower bound is 1/3, due to Han et al. (2008). In this paper, we present a new lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be interesting in itself.

We also give results for the closely related problem in which the size of the square container is not fixed, but must be dynamically increased in order to accommodate online sequences of objects. For this variant, we establish an upper bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming for accommodating an online sequence of squares, this corresponds to a 2.82…-competitive method for minimizing the required container size, and a lower bound of 1.33… for the achievable factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. In: Origami5, pp. 609–626. AK Peters/CRC Press (2011)

    Google Scholar 

  2. Fekete, S.P., Kamphans, T., Schweer, N.: Online square packing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 302–314. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Fekete, S.P., Kamphans, T., Schweer, N.: Online square packing with gravity. Algorithmica (to appear, 2013)

    Google Scholar 

  4. Han, X., Iwama, K., Zhang, G.: Online removable square packing. Theory of Computing Systems 43(1), 38–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hougardy, S.: On packing squares into a rectangle. Computational Geometry: Theory and Applications 44(8), 456–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Januszewski, J., Lassak, M.: On-line packing sequences of cubes in the unit cube. Geometriae Dedicata 67(3), 285–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kleitman, D., Krieger, M.: Packing squares in rectangles I. Annals of the New York Academy of Sciences 175, 253–262 (1970)

    MathSciNet  MATH  Google Scholar 

  8. Kleitman, D.J., Krieger, M.M.: An optimal bound for two dimensional bin packing. In: 16th Annual Symposium on Foundations of Computer Science (FOCS), pp. 163–168 (1975)

    Google Scholar 

  9. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. J. Parallel and Dist. Comp. 10(3), 271–275 (1990)

    Article  MathSciNet  Google Scholar 

  10. Meir, A., Moser, L.: On packing of squares and cubes. Journal of Combinatorial Theory 5(2), 126–134 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moon, J., Moser, L.: Some packing and covering theorems. Colloquium Mathematicum 17, 103–110 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Moser, L.: Poorly formulated unsolved problems of combinatorial geometry. Mimeographed (1966)

    Google Scholar 

  13. Novotný, P.: A note on a packing of squares. Stud. Univ. Transp. Commun. Žilina Math.-Phys. Ser. 10, 35–39 (1995)

    Google Scholar 

  14. Novotný, P.: On packing of squares into a rectangle. Arch. Math. (Brno) 32(2), 75–83 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fekete, S.P., Hoffmann, HF. (2013). Online Square-into-Square Packing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics