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Abstract In 1967, Moon and Moser proved a tight bound on the critical density
of squares in squares: any set of squares with a total area of at most 1/2 can be
packed into a unit square, which is tight. The proof requires full knowledge of
the set, as the algorithmic solution consists in sorting the objects by decreasing
size, and packing them greedily into shelves. Since then, the online version of the
problem has remained open; the best upper bound is still 1/2, while the currently
best lower bound is 1/3, due to Han et al. (2008). In this paper, we present a new
lower bound of 11/32, based on a dynamic shelf allocation scheme, which may be
interesting in itself.

We also give results for the closely related problem in which the size of the
square container is not fixed, but must be dynamically increased in order to ac-
commodate online sequences of objects. For this variant, we establish an upper
bound of 3/7 for the critical density, and a lower bound of 1/8. When aiming
for accommodating an online sequence of squares, this corresponds to a 2.82 . . .-
competitive method for minimizing the required container size, and a lower bound
of 1.33 . . . for the achievable factor.
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1 Introduction

Packing is one of the most natural and common optimization problems. Given a set
O of objects and a container E, find a placement of all objects into E, such that no
two overlap. Packing problems are highly relevant in many practical applications,
both in geometric and abstract settings. Simple one-dimensional variants (such as
the Partition case with two containers, or the Knapsack problem of a largest
packable subset) are NP-hard. Additional difficulties occur in higher dimensions:
as Leung et al. [41] showed, it is NP-hard even to check whether a given set of
squares fits into a unit-square container.

When dealing with an important, but difficult optimization problem, it is cru-
cial to develop a wide array of efficient methods for distinguishing feasible instances
from the infeasible ones. In one dimension, a trivial necessary and sufficient cri-
terion is the total size of the objects in comparison to the container. This makes
it natural to consider a similar approach for the two-dimensional version: What is

the largest number δ, such that any family of squares with area at most δ can be packed

into a unit square? An upper bound of δ ≤ 1/2 is trivial: two squares of size 1/2+ ε

cannot be packed. As Moon and Moser showed in 1967 [43], δ = 1/2 is the correct
critical bound: sort the objects by decreasing size, and greedily pack them into
a vertical stack of one-dimensional “shelves”, i.e., horizontal subpackings whose
height is defined by the largest object.

This approach cannot be used when the set of objects is not known a priori,
i.e., in an online setting. It is not hard to see that a pure shelf-packing approach
can be arbitrarily bad. However, other, more sophisticated approaches were able
to prove lower bounds for δ: the current best bound (established by Han et al. [25])
is based on a relatively natural recursive approach and shows that δ ≥ 1/3.

Furthermore, it may not always be desirable (or possible) to assume a fixed
container: the total area of objects may remain small, so a fixed large, square con-
tainer may be wasteful. Thus, it is logical to consider the size of the container itself
as an optimization parameter. Moreover, considering a possibly larger container
reflects the natural optimization scenario in which the full set of objects must be
accommodated, possibly by paying a price in the container size. From this per-
spective, 1/

√
δ yields a competitive factor for the minimum size of the container,

which is maintained at any stage of the process. This perspective has been studied
extensively for the case of an infinite strip, but not for an adjustable square.

1.1 Our Results

We establish a new best lower bound of δ ≥ 11/32 for packing an online sequence of
squares into a fixed square container, breaking through the threshold of 1/3 that is
natural for simple recursive approaches based on brick-like structures. Our result is
based on a two-dimensional system of multi-directional shelves and buffers, which
are dynamically allocated and updated. We believe that this approach is interesting
in itself, as it may not only yield worst-case estimates, but also provide a possible
avenue for further improvements, and be useful as an algorithmic method.

As a second set of results, we establish the first upper and lower bounds for a
square container, which is dynamically enlarged, but must maintain its quadratic
shape. In particular, we show that there is an upper bound of δ ≤ 3/7 < 1/2 for
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the critical density, and a lower bound of 1/8 ≤ δ; when focusing on the minimum
size of a square container, these results correspond to a 2.82 . . .-competitive factor,
and a lower bound of 1.33 . . . for the achievable factor by any deterministic online
algorithm.

1.2 Related Work

Two- and higher-dimensional problems of packing rectangular objects into rect-
angular containers have received a considerable amount of attention; see Harren’s
Ph.D. thesis [27] for a relatively recent survey. Many of the involved ideas are
closely or loosely related to some of the ideas of our paper. We summarize many
of the related papers, with particular attention dedicated to those that are of direct
significance for our approach.

Offline Packing of Squares. One of the earliest considered packing variants is the
problem of finding a dense square packing for a rectangular container. In 1966
Moser [44] first stated the question as follows:

“What is the smallest number A such that any family of objects with total area
at most 1 can be packed into a rectangle of area A?”

The offline case has been widely studied since 1966; there is a long list of results
for packing squares into a rectangle. Already in 1967, Moon and Moser [43] gave
the first bounds for A: any set of squares with total area at most 1 can be packed
into a square with side lengths

√
2, which shows A ≤ 2, and thus δ ≥ 1/2; they

also proved A ≥ 1.2. Meir and Moser [42] showed that any family of squares each
with side lengths ≤ x and total area A can be packed into a rectangle of width
w and height h, if w, h ≥ x and x2 + (w − x)(h − x) ≥ A; they also proved that
any family of k-dimensional cubes with side lengths ≤ x and total volume V can
be packed into a rectangular parallelepiped with edge lengths a1, . . . , ak if ai ≥ x

for i = 1, . . . , k and xk +
∏k
i=1 (ai − x) ≥ V . Kleitman and Krieger improved the

upper bound on A to
√

3 ≈ 1.733 [39] and to 4/
√

6 ≈ 1.633 [40] by showing that
any finite family of squares with total area 1 can be packed into a rectangle of size√

2×2/
√

3. Novotný further improved the bounds to 1.244 ≈ (2+
√

3)/3 ≤ A < 1.53
in 1995 [45] and 1996 [46]. The current best known upper bound of 1.3999 is due to
Hougardy [30]. There is also a considerable number of other related work on offline
packing squares, cubes, or hypercubes; see [15,33,26] for prominent examples.

Online Packing of Squares into a Square. In 1997, Januszewski and Lassak [37]
studied the online version of the dense packing problem. In particular, they proved
that for d ≥ 5, every online sequence of d-dimensional cubes of total volume 2(1

2 )d

can be packed into the unit cube. For lower dimensions, they established online
methods for packing (hyper-) cubes and squares with a total volume of at most
3
2 (1

2 )d and 5
16 for d ∈ {3, 4} and d = 2, respectively. The results are achieved

by performing an online algorithm that subsequently divides the unit square into
rectangles with aspect ratio

√
2. In the following, we call these rectangles bricks.

The best known lower bound of 2(1
2 )d for any d ≥ 1 was presented by Meir and

Moser [42].
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Using a variant of the brick algorithm, Han et al. [25] extended the result to
packing a 2-dimensional sequence with total area ≤ 1/3 into the unit square.

A different kind of online square packing was considered by Fekete et al. [21,
22]. The container is an unbounded strip, into which objects enter from above in a
Tetris-like fashion; any new object must come to rest on a previously placed object,
and the path to its final destination must be collision-free. Their best competitive
factor is 34/13 ≈ 2.6154 . . ., which corresponds to an (asymptotic) packing density
of 13/34 ≈ 0.38 . . ..

Other Online Packing of Squares. There are various ways to generalize online pack-
ing of squares; see Epstein and van Stee [17,18,19] for online bin packing variants
in two and higher dimensions. In this context, also see parts of Zhang et al. [47].

Online Packing of Rectangles. A natural generalization of online packing of squares
is online packing of rectangles, which have also received a serious amount of at-
tention. Most notably, online strip packing has been considered; for prominent
examples, see Azar and Epstein [1], who employ shelf packing, and Epstein and
van Stee [17].

Packing into One Container. Offline packing of rectangles into a unit square or
rectangle has also been considered in different variants; for examples, see [23], as
well as [36]. Particularly interesting for methods for online packing into a single
container may be the work by Bansal et al. [2], who show that for any complicated
packing of rectangular items into a rectangular container, there is a simpler packing
with almost the same value of items.

Two-Dimensional Bin Packing. Packing squares or rectangles into a minimum num-
ber of square boxes amounts to two-dimensional bin packing, which is closely
related to packing into a single container. Arguably, bin packing is the two-
dimensional packing problem that has received the most attention from an al-
gorithmic perspective. See [10,9,15,13,8,5,3,11,4,47,31,28,7] for particularly rel-
evant work. Most of these papers consider offline problems, with notable exceptions
already cited above.

Resource Augmentation. Our study of online packing into a dynamic square con-
tainer can be interpreted as a variant of resource augmentation, which has been
studied in the context of two-dimensional packing by several other authors, in-
cluding [12,14,24,34].

Strip Packing. Dynamically expanding a square container (as presented in Sec-
tion 3) can be seen as a variation of increasing a container along only one dimen-
sion, i.e., packing into a strip. Two- and higher-dimensional offline strip packing
has been studied intensively, see [38,35,32,6,29] for prominent examples.
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2 Packing into a Fixed Container

As noted in the introduction, it is relatively easy to achieve a dense packing of
squares in an offline setting: sorting the items by decreasing size makes sure that
a shelf-packing approach places squares of similar size together, so the loss of
density remains relatively small. This line of attack is not available in an online
setting; indeed, it is not hard to see that a brute-force shelf-packing method can
be arbitrarily bad if the sequence of items consists of a limited number of medium-
sized squares, followed by a large number of small ones. Allocating different size
classes to different horizontal shelves is not a remedy, as we may end up saving
space for squares that never appear, and run out of space for smaller squares in
the process; on the other hand, fragmenting the space for large squares by placing
small ones into it may be fatal when a large one does appear after all.

Previous approaches (in particular, the brick-packing algorithm) have side-
stepped these difficulties by using a recursive subdivision scheme. While this leads
to relatively good performance guarantees (such as the previous record of 1/3 for
a competitive ratio), it seems impossible to tighten the lower bound; in particular,
1/3 seems to be a natural upper bound for this relatively direct approach. Thus,
making progress on this natural and classical algorithmic problem requires less
elegant, but more powerful tools.

In the following we present a different approach for overcoming the crucial
impediment of mixed square sizes, and breaking through the barrier of 1/3. Our
Recursive Shelf Algorithm aims at subdividing the set of squares into different size
classes called large, medium and small, which are packed into pre-reserved shelves.
The crucial challenge is to dynamically update regions when one of them gets filled
up before the other ones do; in particular, we have to protect against the arrival of
one large square, several medium-sized squares, or many small ones. To this end,
we combine a number of new techniques:

– Initially, we assign carefully chosen horizontal strips for shelf-packing each size
class.

– We provide rules for dynamically updating shelf space when required by the se-
quence of items. In particular, we accommodate a larger set of smaller squares
by inserting additional vertical shelves into the space for larger squares when-
ever necessary.

– In order to achieve the desired overall density, we maintain a set of buffers for
overflowing strips. These buffers can be used for different size classes, depending
on the sequence of squares.

With the help of these techniques, and a careful analysis, we are able to es-
tablish δ ≥ 11/32. It should be noted that the development of this new technique
may be more significant than the numerical improvement of the density bound:
we are convinced that tightening the remaining gap towards the elusive 1/2 will
be possible by an extended (but more complicated) case analysis.

The remainder of this section is organized as follows. In Section 2.1 we give an
overview of the algorithm. Section 2.2 sketches the placement of large objects, while
Section 2.3 describes the packing created with medium-sized squares. In Section 2.4
we describe the general concept of shelf-packing that is used for the packing of
small squares discussed in Section 2.5. The overall performance is analyzed in
Section 2.6.
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(a)

Q1

Q2

d1

d2

(b)

Fig. 1 Packing medium squares (Subsection 2.3). (a): The L-shaped packing created with
medium squares. (b) Density consideration: The Ceiling Packing Algorithm packs at least as
much as the area of the gray region (R) shown on the left. If a portion of R remains uncovered
by squares, a larger portion of U \R must be covered.

2.1 Algorithm Overview

We construct a shelf-based packing in the unit square by packing small, medium

and large squares separately. We stop the Recursive Shelf Algorithm when the
packings of two different subalgorithms would overlap. As it turns out, this can only
happen when the total area of the given squares is greater than 11/32; details are
provided in the “Combined Analysis” of Section 2.6, after describing the approach
for individual size classes.

In the following, we will subdivide the set of possible squares into subsets,
according to their size: We let Hk denote the height class belonging to the interval
(2−(k+1), 2−k]. In particular, we call all squares in H0 large, all squares in H1

medium, and all other squares (in H≥2) small.

2.2 Packing Large Squares

The simplest packing subroutine is applied to large squares, i.e., of size greater
than 1/2. We pack a square Q0 ∈ H0 into the top right corner of the unit square U .
Clearly, only one large square can be part of a sequence with total area ≤ 11/32.
Hence, this single location for the squares in H0 is sufficient.

2.3 Packing Medium Squares

We pack all medium squares (those with side lengths in (1/4, 1/2]) separately; note
that there can be at most five of these squares, otherwise their total area is already
bigger than 3/8 > 11/32.

We start with packing the H1-squares from left to right coinciding with the
top of the unit square U . If a square would cross the right boundary of U , we
continue by placing the following squares from top to bottom coinciding with the
right boundary; see Fig. 1(a).

We call the corresponding subroutine the Ceiling Packing Algorithm. Without
interference of other height classes, the algorithm succeeds in packing any sequence
of H1-squares with total area ≤ 3/8.
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Theorem 1 The Ceiling Packing Subroutine packs any sequence of medium squares

with total area at most 3/8 into the unit square.

Proof Assume that the Ceiling Packing subroutine fails to pack a square Q. By
construction, the algorithm successfully packs squares aligned with the top of U
and the squares aligned with the right boundary of U until the space left at the
bottom of U is too small to fit square Q. We prove that in this case the total
area of the given sequence σ is greater than the area ‖R‖ = 3/8 of the gray region
R depicted in Fig. 1(b). The idea is that all of R is covered by packed squares
except for potentially a small portion of it in the top right that can only be left
uncovered as a result of receiving a large square that covers parts of U \ R. Let
Q2 with side length x2 be the first square that was not packed aligned with the
top boundary of U and let Q1 with side length x1 be the square packed aligned
with the top of U that touches the top boundary of Q2. Let d1 be the distance of
Q1 to the right boundary of U and d2 the distance of Q2 to the top boundary of
U . Then we have d1 < x2 and d2 = x1. Because all medium squares have a side
length of at least 1/4, we have x2

1 = 1/4x1 + (x1−1/4)x1 ≥ 1/4x1 + (d2−1/4) ·1/4
and x2

2 = 1/4x2 + (x2 − 1/4)x2 > 1/4x2 + (d1 − 1/4) · 1/4. Furthermore, we get
that the set σ1 of all squares packed before Q1 in σ has a total area of at least
1/4 · (1− d1 − x1), and that the set σ2 of all squares that appeared after Q2 in σ

has a total area of at least 1/4 · (1− d2 − x2). Hence, we conclude

‖σ‖ ≥ ‖σ1‖+ ‖Q1‖+ ‖Q2‖+ ‖σ2‖

>
1

4
(1− d1 − x1) +

1

4
x1 + (d2 −

1

4
)
1

4
+

1

4
x2 + (d1 −

1

4
)
1

4
+

1

4
(1− d2 − x2)

=
1

4

(
1− x1 − d1 + x1 + d2 −

1

4
+ x2 + d1 −

1

4
+ 1− x2 − d2

)
= 3/8.

2.4 Shelf Packing

In this section we revisit the well-known shelf-packing algorithm that is used for
packing small squares into the unit square. Given a set of squares with maximum
size h, a shelf S is a subrectangle of the container that has height h; the Next Fit

Shelf Algorithm NFS(S) places incoming squares into S next to each other, until
some object no longer fits; see Fig. 2(a). When that happens, the shelf is closed,
and a new shelf gets opened. Before we analyze the density of the resulting packing,
we introduce some notation.

Notation. In the following we call a shelf with height 2−k designed to accommodate
squares of height class Hk an Hk-shelf. We let wS denote the width of a shelf S,
hS denote its height and P(S) denote the set of squares packed into it. We define
usedSection(S) as the horizontal section of S that contains P(S) and `S as its
length; see Fig. 2(b). We denote the last hS -wide section at the end of S by head(S)

and the last hS/2-wide slice by end(S). The total area of the squares packed into
a shelf S is occupied(S). The part of the square Q packed in the upper half of S is
extra(Q).

A useful property of the shelf-packing algorithm is that usedSection(S) has a
packing-density of 1/2 if we pack S with squares of the same height class only. The



8 Sándor P. Fekete, Hella-Franziska Hoffmann

wS

hS

(a)

hS
2

hS`S
hS
2

(b)

hS
2 x

QhS
2

S

x

(c)

Fig. 2 (a) A shelf S packed by NFS(S) with squares of one height class. (b) Different areas
of a shelf S. occupied(S): total area of squares in P(S) (dark gray), usedSection(S): region
with light gray background (incl. occupied(S)) to the left, head(S): region with light gray
background to the right, and end(S): hatched region to the right. (c) Assignment of extra(Q)
(hatched) to S when square Q causes an overflow of shelf S.

gap remaining at the end of a closed shelf may vary depending on the sequence of
squares. However, the following density property described in the following lemma
(due to Moon and Moser [43]).

Lemma 1 Let S be an Hk-shelf with width wS and height hS that is packed by

NFS(S) with a set P(S) of Hk-squares. Let Q be an additional square of Hk with

side length x that does not fit into S. Then the total area ‖P(S)‖ of all squares packed

into S plus the area ‖Q‖ of Q is greater than ‖S‖/2− (hS/2)2 + 1
2hS · x.

In other words: If we count the extra area of the overflowing square Q towards
the density of a closed shelf S, we can, w.l.o.g., assume that S has a packing
density of 1/2, except for at its end end(S). We formalize this charging scheme as
follows. When a square Q causes a shelf S to be closed, we assign extra(Q) to S;
see Fig. 2(c). The total area assigned to S this way is referred to as assigned(S).
Further, define Ã(S) as occupied(S) plus assigned(S) minus extra(Q) of all squares
Q in S.

Corollary 1 Let S be a closed shelf packed by the shelf-packing algorithm. Then Ã(S) ≥
‖S \ end(S)‖/2.

Proof If the packing of P intersects with end(S), then

Ã(S) ≥ occupied(S)−
∑

Q′∈P(S)

extra(Q′) > hS/2 · (wS − hS/2).
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Otherwise, square Q with side length x caused shelf S to be closed and we have:

Ã(S) = occupied(S)−
∑

Q′∈P(S)

extra(Q′) + extra(Q)

=
hS
2
· (wS − x) + x(x− hS

2
)

≥ hS
2
· (wS − x) +

hS
2

(x− hS
2

)

=
hS(wS − hS

2 )

2
.

2.5 The packSmall Subroutine

As noted above, the presence of one large or few medium squares already assigns
a majority of the required area, without causing too much fragmentation. Thus,
the critical question is how to deal with small squares in a way that leaves space
for larger ones, but allows us to find extra space for a continuing sequence of small
squares.

We describe an algorithm for packing any family of Hk-squares with k ≥ 2 and
total area up to 11/32 in Sections 2.5.1 to 2.5.4 and discuss the resulting packing
density in Sections 2.5.5 to 2.5.9. In Section 2.5.10 we describe mixed packing of
small squares and analyze the corresponding density in Sections 2.5.11 and 2.5.12.

2.5.1 The packSmall Algorithm: Overview and Notation

In the Recursive Shelf Algorithm we pack all small squares according to the
packSmall subroutine, independent of the large and medium square packings. The
method is based on the Next Fit Shelf (NFS) packing scheme described above. We
first give a brief overview of the general distribution of the shelves and the order
in which we allocate the shelves for the respective height classes.

Notation and Distribution of the Shelves. The general partition of the unit square we
use is depicted in Fig. 3(a). The regions M1, . . . ,M4 (in that order) act as shelves
for height class H2. We call the union M of the Mi the main packing area; this is the
part of U that will definitely be packed with squares by our packSmall subroutine.
The other regions may stay empty, depending on the sequence of incoming small
squares. The regions B1, . . . , B4 provide shelves for H3. We call the union B of the
Bj the buffer region. In the region A we reserve Hk-shelf space for every k ≥ 4. We
call A the initial buffer region. The ends E1, E2 and E3 of the main packing regions
M1, M2 and M3 serve as both parts of the main packing region and additional
buffer areas. We use Ēi to refer to the vertical section of Mi that does not intersect
with usedSection(Mi).

Shelf Allocation Order. During the packing process, we maintain open shelves for
all the height classes for which we already received at least one square as input
and pack each of them according to NFS. The order and location for the shelf
allocation are chosen as follows.
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M4

B3

M3B4E3

A B2

B1
E2 M2

M1 E1

1
8
1
8

1
4

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

(a) (b)

Fig. 3 (a) Distribution of the shelves for the smallPack Algorithm. (b) Initital shelf packing
and packing directions.

– We start packing small squares into shelves that we open on the left side of the
lower half H` of U ; see Fig. 3(b). The region M1 serves as the first H2-shelf,
the left half (width 1/4) of B1 serves as the first shelf for H3 and region A is
reserved for first shelves for any Hk with k ≥ 4; see details below.

– Once an overflow occurs in a main packing region Mi, we close the correspond-
ing H2-shelf and continue packing H2-squares into Mi+1.

– Once the packing in the initial shelf for Hk with k ≥ 3 reaches a certain length,
we cut a vertical slice Vk out of the currently open H2-shelf (one of the Mi

regions) and use Vk for the packing of subsequent Hk-squares.
– Once the packing in Vk reaches a certain height, we allocate space in the buffer

region B ∪ E to accommodate Hk-squares before returning to pack Vk.
– Once Vk is full, we cut another vertical slice out of the main packing region

and repeat the process.

We claim that we can accommodate any family of small squares with total area
up to 11/32 this way. In the following, we describe the packings for the different
small height classes in more detail.

2.5.2 The packSmall Algorithm: Separate Packing of H2-squares

In the main packing area, we always maintain an open shelf Mi for height class
H2, which is packed with H2-squares according to NFS(Mi). In order to avoid
early collisions with large and medium squares, we start with packing M1 from
left to right, continuing with packing M2 from right to left. Then we alternately
treat M3 and M4 as the current main packing region, placing H2-squares into the
region whose usedSection is smaller. When the length of usedSection(M4) becomes
larger than 3/8, we prefer M3 over M4 until M3 is full.

2.5.3 The packSmall Algorithm: Separate Packing of H3-squares

For the packing of H3-squares we alternate between using the buffer regions B1,
. . . , B4, and vertical slices of width 1/8 cut out of the main packing region as the
currently open H3-shelf; see details below and Fig. 4 for an example.

The algorithm uses variables µ, β, ε1, ε2 and ε3, which are used to quantify
the growth of the packings in regions M , B, E1 ,E2, and E3, respectively. In the
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Q1 Q2Q3

Q4

B1

M1

(a)

Q1 Q2Q3

Q4

B1

M1

Q5

Q6

Q7

Q8

Q9

Q10 Q14

Q12

Q13

Q11 Q15

(b)

Fig. 4 A sample packing of H3-squares in the lower half of U . (a) Initial packing and first
vertical shelf. (b) Packing after three iterations of step 2. and step 3.

algorithm we use a comparison of µ and β +
∑
i εi to decide whether to place the

next incoming square into the main packing region M or the buffer region B ∪E.
Intuitively, we do this to ensure approximately proportional growth of the two
regions (see Lemma 7), which in turn helps avoiding early collisions with large
and medium squares. In addition, we use V3 to denote the (only) currently open
vertical H3-shelf in M . We define the algorithm packSmall(3) for H3 as follows.

0. Set µ := 0, β := 0, εi := 0 ∀i, V3 := ∅.
1. Open an H3-shelf in B1. Use NFS(B1) to pack incoming H3-squares Q and

increase β by xQ each time. Once β + xQ ≥ µ + 1/4, for the next incoming
square Q, set β := β + 1/16− xQ and continue with step 2.

2. Open a new vertical shelf V of width 1
8 and height 1

4 at the end of the packing
in M . Set V3 := V. Use NFS(V3) (from bottom to top) to pack H3-squares until
the packing of the next square Q in V3 would intersect with head(V3).

3. Increase µ by 1/16 and:
(a) If β +

∑
i εi + xQ ≥ µ+ 1/4, pack Q into V3 and increase β by xQ − 1/16.

(b) Otherwise:
i. If there is an open end buffer shelf Ēi for which Mi is closed, then

– either pack Q into V3 and set εi := εi + 1/16 if xQ > 1/8− `i or
– use NFS(Ēi) to pack Q and set εi := εi + xQ, otherwise.

ii. Otherwise, use NFS(B1) to pack Q and increase β by xQ.
4. Use NFS(V3) to pack all following H3-squares until V3 is full.
5. Repeat Steps 2 to 4 using regions M1, . . . , M4 (in the same order and direction

as for the H2-square packing) for the placement of V3 in Step 2 and regions
B1, . . . , B4, S3 (in this order) for the placement of Q in Step 3(b)ii. If the
algorithm closes region Mi, set εi := 2`Ei

. If at any point in time εi ≥ 2/16 or
`Ēi
≥ 2/16, close Ēi and set εi := max{εi, 2/16}.

2.5.4 The packSmall Algorithm: Separate Packing of Hk-squares with k ≥ 4

For each Hk with k ≥ 4, the packing algorithm packSmall(k) is defined as follows.

0. Set µ := 0, β := 0, εi := 0 ∀i, Vk := ∅, Bk := ∅.
1. Open an Hk-shelf of length 1/4 (and height 2−k) on top of the existing shelves

in A. Call this shelf Ik. Use NFS(Ik) (from left to right) to pack incoming
Hk-squares until Ik is full.
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2. Open a vertical shelf V of width 2−k and height 1/4 at the end of the packing
in M . Set Vk := V and use NFS(Vk) (from bottom to top) to pack Hk-squares
until the packing of the next square Q in Vk would intersect with head(Vk).

3. Increase µ by 2−k/2 and:
(a) If β +

∑
i εi ≥ µ+ 3/16, pack square Q into Vk.

(b) Otherwise:
i. If there is an open end buffer shelf Ēi for which Mi is closed, then open

a horizontal Hk-shelf E with width 1/8 − `Ēi
and height 2−k on top

of the current packing in Ēi, set Ek := E and εi := εi + 2−k/2. Use
NFS(Ek) to pack incoming Hk-squares until Ek is full.

ii. Otherwise, open a vertical Hk-shelf Bk (with height 1/8 and width
2−k) at the end of the current packing in B1, set β := β+ 2−k and use
NFS(Bk) to pack incoming Hk-squares until Bk is full.

4. Use NFS(Vk) to pack all following Hk-squares until Vk is full.
5. Repeat Steps 2 to 4 using regions M1, . . . , M4 (in the same order and direction

as for the H2-square packing) for the placement of Vk in Step 2 and regions
B1, . . . , B4, S4 (in this order) for the placement of Bk in Step 3(b)ii. If the
algorithm closes region Mi, set εi := 2`Ei

. If at any point in time εi ≥ 2/16 or
`Ēi
≥ 2/16, close Ēi and set εi := max{εi, 2/16}.

2.5.5 packSmall Analysis: Overview

In following sections we prove that the packSmall subroutine successfully packs
any set of small squares with total area at most 11/32.

In order to quantify the overall density achieved by the packSmall Algorithm,
we make some simplifying assumptions on the density reached in the respective
shelves. We argue that low-density shelves only appear along with high-density
regions and define a charging scheme that assigns extra areas from dense regions
to sparse regions in order to estimate the overall density. More precisely, we prove
the following important invariant for our algorithm, which is essential for the
overall density analysis in the case of mixed packings; see Section 2.5.11.

Property 1 In any step of the algorithm, the total area of the small squares packed
into U is at least ‖usedSection(M) \ E‖/2.

We start the density analysis by introducing notation, simplifying assump-
tions and general packing properties in Section 2.5.6. We proceed with analyzing
the case of separately packing a set of only Hk-squares. In Sections 2.5.7, Sec-
tions 2.5.8 and 2.5.9, we discuss the cases k = 2, k = 3 and k ≥ 4, respectively.
We describe and analyze the case of packing a mixed sequence of small squares
in Sections 2.5.10 2.5.11 and conclude with a presentation of additional density
properties in Section 2.5.12.
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2.5.6 packSmall Analysis: Preliminaries

For the analysis of the density achieved with the packing of small squares, we use
the following notation:

V kX := set of all vertical Hk-shelves in region X

Vopen := set of all open vertical shelves

Vclosed := set of all closed vertical shelves

V khead := set of all V ∈ V kM for which we executed Step 3

in the smallPack(k) subroutine after opening V

Vhead :=
⋃
k∈K

V khead

V B
head := set of all V ∈ Vhead for which we placed a square in B (Step 3(b)ii)

V E
head := set of all V ∈ Vhead for which we placed a square in E (Step 3(b)i)

Vk≥4 := set of all Hk≥4-shelves

K := set containing all k for which V kM 6= ∅
β, εi, µ,Vk,Bk := variables used in the algorithm (see above)

e := the index of the end buffer region Ēi that was closed last

`X := total length of usedSection(X) (see Section 2.4)

Ã(S) := occupied(S) + assigned(S)−
∑
Q∈S

extra(Q) for shelf S

To make similar simplifying density considerations as in Corollary 1, we define
the following charging scheme that assigns area from high-density regions to low-
density regions.

Charging Scheme:

I: From each square Q that causes an overflow in a shelf S assign extra(Q) to S.
II: From each H3-square Q that was packed into V3 in Step 3(a), assign extra(Q)

to the buffer region Bi.
III: From each H3-square Q that was packed into V3 in Step 3(b)i, assign extra(Q)

to the buffer region Ēi.

In the following we use this charging scheme for the definition of assigned(S) and
assume, w.l.o.g. that `S ≥ wS\end(S) for any closed shelf S that is packed by
NFS(S). Because we only charge squares with their extra area and we do not
charge any squares twice, we know that Ã(S) is a lower bound on the actual
density of S. In the remainder of this section, we prove some general packing
properties, which we use in subsequent density considerations.

Lemma 2 Let V be an Hk-shelf in Vclosed, then Ã(V) ≥ ‖V‖/2− (wV/2)2.

Proof The claim follows directly with Corollary 1 and the fact that each vertical
Hk-shelf V is packed (vertically) by NFS(S) with Hk-squares only. ut

Lemma 3 Let V be an Hk-shelf in Vopen, then Ã(V) ≥ (wV/2)2.
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Proof The claim follows directly from the fact that, by construction, each open
vertical shelf contains at least one square of size at least wVo/2. ut

Lemma 4 The total area
∑
V∈V k

M

Ã(V) of vertical Hk-shelves in the main packing area

M is greater or equal to
∑
V∈V k

M

‖V‖/2−
∑

V∈V k
M∩Vclosed

(wV/2)2 − 1
4 · 2

−k/2 + Ã(Vk).

Proof By construction, we always close the vertical Hk-shelf Vk before opening a
new one. Thus, Vk is the only vertical Hk-shelf in M that is open and the claim
follows with Lemma 2 and the fact that ‖Vk‖ = 1/4 · 2−k. ut

Lemma 5 For any Hk-shelf S packed by NFS(S), it holds Ã(S) ≥ hS`S/2.

Proof The claim follows directly from the fact that usedSection(S) is packed with
Hk-squares only, which all have size at least hS/2.

Lemma 6 For all k ≥ 4, we have

Ã(Vk) + Ã(Bk) ≥

{
1
4 ·

2−k

2 − (2−k

2 )2 if Vk ∈ Vhead and Bk ∈ Vclosed
1
8 ·

2−k

2 otherwise

Proof If Bk is closed, then Ã(Bk) ≥ (1/8−2−k/2)·2−k/2) by Corollary 1. Otherwise,
Ã(Bk) ≥ 2−k/2 because Bk contains at least one Hk-square. We only execute Step 3
of the algorithm if the next square Q would intersect with head(Vk) when placed
in Vk. Thus, Ã(Bk) ≥ (1/4 − 2−k − 2−k) · 2−k/2 if V ∈ Vhead. If V /∈ Vhead, then

Ã(Bk) ≥ (2−k

2 )2 and Bk must be closed.

Lemma 7 After each step in the algorithm it holds β +
∑
i εi ≥ µ+ 3/16.

Proof To simplify the notation define ε :=
∑
i εi. Initially, we have µ = β = ε = 0.

Now consider the execution of any step in the algorithm that could change any of
these values.

Step 1.: The variable values only change if k = 3. If βold+xQ ≥ µold+1/4, we have
βnew+εnew = βold+xQ−1/16+εold ≥ µold+1/4−xQ+xQ−1/16 = µnew+3/16.
Otherwise, ∆β = xQ and ∆µ = ∆ε = 0.

Step 2.: Nothing changes.
Step 3.: Independent of k, we have µnew = µold + 2−k/2.

Subcase (a) & k = 3: This step is only executed if βold+εold+xQ ≥ µnew+1/4,

which implies βnew + εnew = βold + xQ − 1/16 + εold ≥ µnew + 1/4 + xQ −
1/16− xQ = µnew + 3/16

Subcase (a) & k ≥ 4: We have ∆β = ∆ε = 0 and βold + εold ≥ µnew + 1/4.
Subcase (b) & k = 3: We either have ∆β = xQ and ∆ε = 2−k/2 (subcase i),

or ∆β = xQ ≥ 2−k/2 and ∆ε = 0 (subcase ii).

Subcase (b) & k ≥ 4: We either have ∆β = 0 and ∆ε = 2−k/2 (subcase i), or
∆β = 2−k and ∆ε = 0 (subcase ii).

Step 4.: Nothing changes.
Step 5.: We only increase the left hand side of the equation.

The inequality holds in either of the cases and the claim follows by induction. ut
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Lemma 8 In each step of the algorithm, we have assigned(B) ≥ 1/16 · (β − `B).

Proof We give a proof by induction over the changes of assigned(B), β and `B .
Initially, we have β = assigned(B) = `B = 0. If k = 3, then ∆β = (xQ − 1

16 ),
∆`B = 0 and ∆assigned(B) = xQ(xQ − 1

16 ) ≥ 1
16 (∆β − ∆`B) in Step 3(a) and

∆assigned(B) = 0 and ∆β = ∆`B = xQ in Steps 1 and 3(b). If k ≥ 4, then

∆β = ∆`B = 2−k in Step 3(b). In all other cases, ∆assigned(B) ≥ 0 = ∆β = ∆`B .
ut

Lemma 9 In each step of the algorithm: µ =
∑
V∈Vhead

wV
2 and Vclosed ⊆ Vhead.

Proof By construction, we increase µ by 2−k

2 = wV
2 each time we execute Step 3 for

the packing of Hk-squares. In addition, we only close the currently open vertical
main packing shelf Vk (Step 4) after executing Step 3, which proves the claim. ut

2.5.7 packSmall Analysis: Overall Density of Separate H2-Square Packing

Lemma 10 The algorithm successfully packs any sequence of H2-squares with total

area at most 11/32.

Proof Using the Next Fit Shelf Algorithm NFS(M), the packing explicitly allocates
a position for each incoming H2-square until on overflow occurs in M4. In that case,
we have ‖P‖ + ‖Q‖ > 1/4 · wM\E · 1/2 = 1/8 · (7/8 + 3/8 + 5/8 + 7/8) = 22/64
by Corollary 1, which contradicts ‖P‖ ≤ 11/32. Thus, the algorithm successfully
packs all incoming H2-squares. ut

2.5.8 packSmall Analysis: Overall Density of Separate H3-Square Packing

In this subsection we analyze the overall packing density for the special case of
packing a sequence of squares that all belong to height class H3.

Lemma 11 If the input sequence contains only H3-squares, then ‖P‖ ≥ 1
8 `M\E after

each step of the algorithm.

Proof By construction, Section M only contains vertical H3-shelves. Thus, we have
`M =

∑
V∈V 3

M
wV and with Lemma 4 we get

Ã(M) ≥
∑
V∈V 3

M

Ã(V) ≥ 1

4
`M/2−

∑
V∈V 3

M∩Vclosed

(wV/2)2 − 1

16
· 1

4
+ Ã(V3) (1)

With Lemmas 5 and 8, we get

Ã(B) ≥ assigned(B) + occupied(B)− extra(B) ≥ 1

16
· (β − `B) +

1

16
`B =

1

16
β (2)

By construction, we have εi = 2`Ei
∀i ≤ e and wV/2 = 1/16 Thus, by combining

Equations 1 and 2 and applying Lemma 7, we get

‖P‖ ≥ Ã(M) + Ã(B) ≥ 1

8
`M +

1

16

(
β − 3

16

)
−

∑
V∈V 3

M∩Vclosed

(
wV
2

)2 − 1

162
+ Ã(V3)

≥ 1

8
`M\E +

1

16

µ− ∑
V∈V 3

M∩Vclosed

wV
2

− 1

162
+ Ã(V3)

The claim follows with Lemmas 9 and 11. ut
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Lemma 12 The algorithm successfully packs any sequence of H3-squares with total

area at most 11/32.

Proof The algorithm explicitly assigns an unoccupied space to the next incoming
square or vertical shelf until an overflow occurs in M4 or B4. If an overflow occurred
in M4, we would have `M4

= wM4
and M1, M2 and M3 are closed.Thus, ‖P‖+‖Q‖ >

1/8 · wM\E = 22/64 by Lemma 11, which contradicts ‖P‖ ≤ 11/32. Assume we
could not fit a square Q into B4 in step 3(b)ii of the algorithm, then `B4

+xQ > 1/4
and B1, B2 and B3 are closed. Thus, β + xQ ≥

∑
i `Bi

> (7 + 3 + 7 + 4)/16 =
21/16. However, we only execute Step 3(b)ii if β + xQ < µ− ε+ 1/4 = `M\E/2 +
`E/2 −

∑e
i=1 2`Ei

+ 1/4 < 20/16, which is a contradiction. Hence, the algorithm
successfully packs any sequence of H2-squares. ut

2.5.9 packSmall Analysis: Overall Density of Separate Hk≥4-Square Packing

In this subsection we analyze the overall packing density for the special case of
packing a sequence of squares that all belong to height class Hk for a fixed k ≥ 4.

Lemma 13 If the input sequence contains only Hk-squares with k ≥ 4, then ‖P‖ ≥
1
8 `M\E after each step of the algorithm.

Proof By the same reasoning as for Equation 3 in Lemma 11 we have

Ã(M) ≥
∑
V∈V k

M

Ã(V) ≥ 1

4
`M/2−

∑
V∈V k

M∩Vclosed

(wV/2)2 − 1

4
· 2−k

2
+ Ã(Vk) (3)

By construction, we have

|V B
head ∩ V kM | = |V

k
B |, and wV = wB ∀V ∈ V B

head ∩ V kM , B ∈ V kB . (4)

Because we maintain at most one open vertical Hk-buffer-shelf (Bk) at all times,
the following equation follows with Lemma 2 and Equation 4.∑
B∈V k

B

Ã(B) ≥ Ã(Bk) +
∑

B∈V k
B\{Bk}

‖B‖/2− (wB/2)2 (5)

≥ Ã(Bk)− 1

16
· 2−k

2
− (

2−k

2
)2 +

∑
V∈V B

head

(
1

16
· (wV/2) + (wV/2)2)

Because Section B only contains vertical Hk-shelves and β = `B =
∑
V∈V B

head
wV :

Ã(B) ≥ Ã(Bk)− 1

16
· 2−k

2
− (

2−k

2
)2 +

1

16
· β/2 +

∑
V∈V B

head

(wV/2)2 (6)

Section A contains exactly one horizontal Hk-shelf Ik, which is closed before pack-
ing Hk-squares into M . Thus, if M contains at least one vertical Hk-shelf, we
have

Ã(A) = Ã(Ik) ≥ (1/4− 2−k/2) · 2−k/2. (7)
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By combining Equations 3, 6 and 7 and applying Lemma 7, we get

‖P‖ ≥ Ã(M) + Ã(B) + Ã(A)

≥ 1

8
`M−

∑
V∈V k

M∩Vclosed

(wV/2)2 +
∑
V∈V B

head

(wV/2)2 + Ã(Bk) + Ã(Vk)

+
1

16

β − ∑
V∈V B

head∩V k
M

(wV/2)

− 1

16
· 2−k

2
− 2(

2−k

2
)2

≥ 1

8
`M\E+

1

16

µ− ∑
V∈V k

M∩Vclosed

wV
2

+ Ã(Bk) + Ã(Vk)− 1

16
· 2−k

2
− 2(

2−k

2
)2

The claim follows with Lemmas 6 and 9. ut

Lemma 14 The algorithm successfully packs any sequence of Hk-squares with k ≥ 4
and total area at most 11/32.

Proof By the same reasoning as in the proof of Lemma 12, no overflow occurs
in M as long as ‖σ‖ ≤ 11/32. Assume we could not fit a vertical Hk-shelf into
B4, then `B4

+ 2−k > 1/4 and B1, B2 and B3 are closed. Thus, β ≥
∑
i `Bi

>

(7 + 3 + 7 + 4)/16 − 2−k = 21.5/16. However, for k ≥ 4, we only execute Step
3(b)ii if β < µ − ε + 3/16 = `M\E/2 + `E/2 −

∑e
i=1 2`Ei

+ 1/4 < 20/16, which
is a contradiction. Hence, the algorithm successfully packs any sequence of Hk-
squares. ut

2.5.10 The packSmall Algorithm: Mixed Packing of Small Squares

In this section we describe the packing created by the packSmall Algorithm for the
case that the input sequence contains a mixed set of small squares.

When receiving squares of different small height classes, not much changes.
We allocate shelves and fill them by placing squares (or vertical subshelves) at
the end of their used sections according to the packSmall(k) algorithm given in
Sections 2.5.2 to 2.5.4 for each class separately. Once we receive a first square
of height class Hk, we simply start running packSmall(k) in parallel to the other
packSmall subroutines. For all subsequent Hk-squares Q in the input, we simply
perform the next step in packSmall(k) to pack Q. The variables µ, β and εi become
shared variables. They are initialized once to 0 in a global Step 0 and are then
modified by each of the different subroutines as described above (Steps 1 to 5).
The resulting packing differs from the separate packings in the following two ways.

– The main packing regions M and buffer regions B∪Ē may now contain vertical
shelves from a variety of height classes; see Fig. 5.

– Because the vertical shelves for Hk≥3 do not fit as nicely into M as is the case
in the separate packings, gaps may remain at the end of the packing in each
Mi. The algorithm uses these gaps for the placement of buffer squares and
horizontal buffer shelves; see Fig. 6 and Step 3(b)i of the algorithm.
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Fig. 5 Sample packing of squares and vertical subshelves for mixed small height classes.

`i

Li

1/8

xQQ

`i

Li

1/8

Q

Fig. 6 The buffer packing performed in the end buffer regions: (left) packing of a fitting
H3-square and (right) subshelf packing of H≥4 squares.

2.5.11 packSmall Analysis: Density of Mixed Small Square Packing

In this section we analyze the overall density achieved by the packSmall algorithm
for any input sequence of small squares.

Lemma 15 After each step of the packSmall Algorithm we have ‖Ps‖ ≥ 1
8 `M\E+ 1

16 ·∑
V∈Vopen∩Vhead

wV
2 +

∑
k∈K(Ã(Vk)− (2−k

2 )2) +
∑
k∈K\3(Ã(Bk)− (1

8 −
2−k

2 )2−k

2 )

Proof By construction, M only contains H2 squares and vertical Hk≥3-shelves.

Thus, Ã(M) ≥ 1
8 `M −

∑
V∈VM

‖V‖+
∑
V∈VM

Ã(V) and with Lemma 4 we get

Ã(M) ≥ 1

8
`M −

∑
V∈VM∩Vclosed

(wV/2)2 +
∑
k∈K

(
Ã(Vk)− 1

4
· 2−k

2

)

Analogously, we have Ã(B) ≥ 1
16 `B −

∑
B∈VB

‖B‖+
∑
B∈VB

Ã(B), which together

with Lemma 8, Equations 4 and 5 and wV/2 = 1/16 for V ∈ V 3
M implies

Ã(B) ≥ 1

16

β − ∑
V∈V B

head

wV
2

+
∑
V∈V B

head

(
wV
2

)2 +
∑

k∈K\3

(Ã(Bk)− (
1

8
− 2−k

2
)
2−k

2
)

Let ε̄i be the amount assigned to εi in the first subcase of 3(b)i in smallPack(3).
By construction, we have assigned(Ēi) = (1/16− `Ei

)ε̄i and

εi =

{
ε̄i + `Ēi

−
∑
V∈V Ei

head∩Vk≥4
wV/2 if Ēi is open

max{2/16, 2/16`Ei
} if Ēi is closed

(8)
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If `Ei
≥ 1/16, we have V Ei

head = ∅ and εi := 2`Ei
. Otherwise, Ã(Ēi) ≥ 1

16 `Ēi
−∑

E∈V
Ē
‖E‖+

∑
E∈V

Ēi

Ã(E) and with the same reasoning as for Equation 5 we get

occupied(Ēi) ≥
1

16
(`Ēi

−
∑
V∈V Ei

head

wV
2

) +
∑
V∈V Ei

head

(
wV
2

)2 − `Ei

∑
V∈V Ei

head∩Vk≥4

wV
2

By combining the above equations with ε̄i ≤ 2/16 and `Ei
< 1/16, we get

Ã(Ēi) ≥
1

16
(εi − 2`Ei

−
∑

V∈V Ei
head∩Vk≥4

wV
2

) +
∑
V∈V Ei

head

(
wV
2

)2

By the same reasoning as for Equation 7, we get

Ã(A) ≥
∑
k∈K

Ã(Ik) ≥
∑
k∈K

(1/4− 2−k/2) · 2−k/2

The claim follows with ‖Ps‖ ≥ Ã(M)+ Ã(B)+ Ã(Ē)+ Ã(A) and Lemmas 7 and 9.
ut

Theorem 2 The packSmall Algorithm packs any sequence of small squares with total

area at most 11/32 into the unit square.

Proof Let Q be the next incoming Hk-square. We consider all possible cases in
which the algorithm does not explicitly assign an unoccupied space to Q.

1. Assume Q causes an overflow in M4. Then either k = 2 and ‖Q‖ > 1/8wQ
or k ≥ 3, `M\E + 2−k > 22/16 and Ã(Vk) + ‖Q‖ > ‖Vk‖/2 = 1/8 · 2−k by
construction.

2. Assume the algorithm cannot open a new vertical buffer shelf B for Hk with
k ≥ 5 in B. Then β+2−k > 21/16 and `M\E/2 = µ−`E/2 > β+ε−`E/2−3/16 >

21/16− 2−k + 4.5/16− 3/16 = 22.5/16− wVk .
3. Assume Q causes an overflow in V3 or V4. Then, by construction, Vk ∈ Vopen ∩

Vhead, Ã(Vk) + ‖Q‖ > 1/8 · wVk ≥ 1/8 · 0.5/16, all Bi regions must have been
closed and we have β ≥

∑
i `Bi

≥ 20/16. With Lemma 7, we have `M\E/2 =
µ− `E/2 > β + ε− `E/2− 1/4 > 21.5/16.

In either of the three cases we get ‖σ‖ > 11/32 with Lemmas 3, 6 and 15, a contra-
diction. Thus, the algorithm successfully packs any sequence of small squares. ut

2.5.12 packSmall Analysis: Some Additional Properties.

Before we analyze the algorithms performance in the presence of large and medium
squares, we state a couple of important properties of the packing created with small
squares.

Recall that we use variable β to quantify the growth of the buffer packing. By
construction, we can relate the length of the buffer region and the total area of
the input as follows.

Lemma 16 Let Q be a small square with side length xQ in the buffer region B and

let Ps be the set of small squares received so far. Then the total area of the small input

squares ‖Ps‖ is greater than (β + 1.5
16 e+ xQ − 1/16) · 1/4.
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Proof By construction, we only pack an H3-square into B if β + 2`E + ε + xQ <

µ+ 1/4. For Q ∈ Hk with k ≥ 4 we have xQ < 1/16 and we only extend the buffer
packing if β+2`E +ε < µ+3/16. In either case we get β+2`E +ε+xQ−1/16 < µ.
Recall that µ is defined as the total width of the vertical shelves in M . Thus, with
Lemmas 7, 9, and 15 and Equation 8 we get

‖Ps‖ ≥ 1/8`M\E ≥ (µ−
∑
V∈VE

wV/2) · 1/4

> (β + ε+ xQ − 1/16− `E/2) · 1/4

ut

As a direct implication of Lemma 16 and the fact that when B4 is first used
for buffer square placement in step 3(b), both end buffer regions Ē1 and Ē2 have
successfully been closed by the algorithm before, we get the following lower bounds
for the total area ‖Ps‖ of small squares packed, as a function of the total length
of the packing in B.

Property 2 Let Q be a small square in the buffer region B2 with side length x and
distance d > 1/4 to the left boundary of U , then ‖Ps‖ > (d+ x− 1/16) · 1/4.

Property 3 If there is a small square in B3, Then ‖Ps‖ > 7/64.

Property 4 Let Q be a small square in B3 with side length x that was packed in a
distance d > 0 to the bottom of B3. Then ‖Ps‖ > (7.5/16 + d+ x) · 1/4.

Property 5 If there is a small square in B4, then ‖Ps‖ > 17/64.

Property 6 Let Q be a small square in B4 with side length x and distance d > 0
from the bottom of B4. Then ‖Ps‖ > (1 + d+ x) · 1/4.

The following properties follow directly from the algorithm invariant of Property 1.

Property 7 When the first small square is packed into M2, then ‖Ps‖ ≥ 7/64.

Property 8 When the first small square is packed into M3, then Ã(H`) ≥ 10/64.

2.6 Combined Analysis

In the previous sections we proved that the algorithm successfully packs small,
medium and large squares separately, as long as input has a total area of at most
11/32. A case distinction over all possible collisions that may appear between the
packings of these height classes can be used to prove the main result.

Theorem 3 The Recursive Shelf Algorithm packs any sequence of squares with total

area at most 11/32 into the unit square.

We prove the claim by showing that if the algorithm fails to pack a square, the
total area of the given squares must exceed 11/32. In the following we analyze the
packing density at the time a collision of the different packing subroutines would
appear. First we consider a collision between a medium and a small square in the
upper half Hu of the unit square container.
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Hu

Q

(a) Packing created with
medium squares.

B3

B4 M3

M4

Q

(b) Packing created with
small squares.

Fig. 7 Packing performed in the upper half of U . The feasible packing area has light gray
background, the medium gray part represents the packing created before Q was placed.
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Fig. 8 Collision of a medium square Q1 with an H2-square Q2 in Hu.

Lemma 17 If a medium square Q1 collides with a part of the packing constructed with

small squares, then ‖Q1‖+ Ã(Hu) ≥ 6/32.

Proof Recall that we pack the medium sized squares from left to right aligned with
the top boundary of Hu; see Fig. 7(a). The packing of small squares (into M3 and
M4) is performed from right to left; see Fig. 7(b). Also recall that we alternatingly
use M3 and M4 as the current main packing region (choosing which ever half is
less full in width) until the packing in M4 reaches a total length at least 3/8. Then
we only pack M3 until it is completely filled, before finishing the packing in M4.

Let Q1 be a medium square that collides with a small square in the upper half
Hu of the unit bin. Then Q1 either intersects a vertical shelf S or an H2-square
Q2. The main idea is to prove that the parts of Hu \ B3 both right and left to
Q2/S have a density of 1/2. We distinguish six different cases depending on the
location of S or Q2 in Hu.

1. Q1 collides with an H2-square Q2 in M4:

We know `M3
> `M4

− wS , as otherwise we would have packed Q2 in M3.
Therefore, the entire part of M3 ∪M4 to the right of Q2 must be used by small
squares, thus having a density of 1/2. Additionally, the section used by the
H1-squares must be filled to a height of at least 1/4. Hence, we know that
the sections of Hu \ B3 both right and left to Q2 are half full; see Fig. 8(a).
Therefore, with x2 ≥ 1/8,

Ã(Hu) >
(7/8− x2) · 1/2

2
+ x2

2

≥ 7

32
+ x2

(
x2 −

1

4

)
≥ 7

32
+

1

8
·
(

1

8
− 1

4

)
>

6

32
.
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Fig. 9 Collision of a medium square Q1 with vertical shelf S in Hu.

2. Q1 collides with an H2-square Q2 in M3:

By construction we have `M3
− x2 ≤ `M4

or `M4
≥ 3/8, as we packed Q2 into

M3 instead of M4.
(a) If `M3

− x2 ≤ `M4
, the situation is symmetric to the one in the previous

case; see Fig. 8(b). Because Q1 is aligned with the top and Q2 with the
bottom of Hu and Q1 and Q2 collide, we have x1 + x2 > 1/2. Thus, we get

Ã(Hu) >
(7/8− x1 − x2) · 1/2

2
+ x2

1 + x2
2

≥ 7

32
− x1 + x2

4
+

(x1 + x2)2

2

>
7

32
− (x1 + x2) · 1/2

2
+

(x1 + x2) · 1/2
2

>
6

32
.

(b) Otherwise, `M3
− x2 > `M4

≥ 3/8; see Fig. 8(c). Again, we know x1 + x2 >

1/2. Thus,

Ã(Hu) ≥ x2
1 + x2

2 +
‖usedSection(M3)‖

2
+
‖usedSection(M4)‖

2

>
(x1 + x2)2

2
+ 2 · ‖usedSection(M4)‖

2

>
(1/2)2

2
+

3

8
· 1

4
>

6

32
.

3. Q1 collides with a vertical shelf S in M4:

Analogously to the first case, we know that the sections of Hu \B4 both right
and left to S must be half full; see Fig. 9(a). Thus, with wS ≤ 1/8 we get:

Ã(Hu) >
(7/8− wS) · 1/2

2
+
‖S‖
2

≥ 7

32
− wS

4
≥ 6

32
.

4. Q1 collides with a vertical shelf S in M3:

Analogously to the second case, we must have `M3
− wS ≤ `M4

or `M4
≥ 3/8

as we opened S in M3.
(a) If `M3

− wS ≤ `M4
, then we have the same conditions as described in the

first case; see Fig. 9(b). We analogously get

Ã(Hu) >

(
7

8
− wS

)
1

4
≥ 6

32
.
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(b) Otherwise, `M3
− wS > `M4

≥ 3/8. Let `1 be the length of the Hu-section
used by H1. We know `1 ≥ 1/4 and `M3

> 7/8− `1; see Fig. 9(c). Thus,

Ã(Hu) ≥ `1 · 1

4
+
‖usedSection(M3)‖

2
+
‖usedSection(M4)‖

2

> `1 · 1

4
+

(7/8− `1) · 1/4
2

+
3/8 · 1/4

2

≥ `1

8
+

7

64
+

3

64
≥ 6

32
.

ut

We are now able to prove Theorem 3.

Proof (of Theorem 3) Let Q be the square at which the algorithm stops. Denote
σ the set of all input squares and P the set of all squares packed at the time Q
arrives. We claim ‖Q‖+ ‖P‖ > 11/32. To prove this statement we distinguish the
different types of collisions that might cause the algorithm to stop with failure.
Note that we covered the cases in which σ consists of either all large, all medium
or all small squares in the previous sections. In the following we denote Ps the set
of all small squares in P and Pm the set of all medium squares in P.

1. A large square Q0 collides with a medium square Q1:

In this case, the first (and only) square of H0 collides with the L-shaped packing
produced by the Ceiling Algorithm; see Fig. 10(b). We know ‖Q0‖ > (1/2)2 =
1/4 and the shelf packing for the H1-squares must reach from the left boundary
to more than a distance of x0 from the right boundary. Thus, as xi ≥ 1/4
for any square Qi ∈ H1, the total area of the input sequence ‖σ‖ is at least
‖P‖+ ‖Q0‖ > x2

0 + (1− x0) · 1
4 ≥ 3/8 > 11/32.

2. A large square Q0 collides with a small square Qs:

If the side length x0 of Q0 is greater than
√

11/32, then ‖Q0‖ > 11/32 and we

are done. Therefore, we assume x0 ≤
√

11/32 < 5/8. There are two cases:
(a) Qs is in the main packing area:

Because x0 < 5/8 < 3/4, Qs must have been packed into M2, M3 or M4. In
any case, a small square must be in M2 and by Property 7 we have a total
area of more than 7/64 from small squares. Additionally, we have x0 ≥ 1/2,
as Q0 is large. That is, ‖σ‖ ≥ ‖Q0‖+‖Ps‖ > (1/2)2+7/64 = 23/64 > 11/32;
Fig. 10(c).

(b) Qs is in the buffer area:

We have that Qs is not in B1 since x0 < 5/8. If Qs is located in B3 or B4,
then ‖Ps‖ > 7/64 according to Property 3 and ‖σ‖ > (1/2)2+7/64 > 11/32.
Otherwise, Qs is located in B2. Let d be the distance of Qs to the left
boundary of the unit square. As Q0 and Qs collide, we have d+xs+x0 > 1;
see Fig. 10(d). We distinguish two cases for the side length of Q0:

i. x0 ∈ (1/2, 9/16): Then d + xs > 1 − x0 > 7/16, which implies d >

7/16− 1/8 > 1/4. Thus, by Property 2 we get

‖Ps‖ >
d+ xs − 1/16

4
>

7/16− 1/16

4
= 6/64
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ii. x0 ∈ [9/16, 5/8): Then d + xs > 1 − x0 > 3/8, which implies d >

3/8− 1/8 = 1/4. Thus, by Property 2 we get

‖Ps‖ >
d+ xs − 1/16

4
>

3/8− 1/16

4
= 5/64

In total we get
‖σ‖ ≥ ‖Q0‖+ ‖Ps‖ > min{(1/2)2 + 6/64, (9/16)2 + 5/64} = 11/32.

3. A medium square Q1 collides with a small square Qs:

There are many different types of collisions that might appear between the
small square packing and a square of H1. Note that the ceiling packing never
interacts with the buffer area of H`, but might interact with the buffers in Hu.
(a) Qs is (a buffer square) in B3:

Recall that all medium squares are packed from left to right aligned with
the top boundary of U . Let d be the distance of Qs to the lower boundary
of B3.
We distinguish two cases for xs + d:

i. xs + d ≤ 1/8: Then Q1 intersects the 1/8-high section at the bottom
of B3; see Fig. 10(e). That is, either an overflow of H1-squares occured
in Hu and we have ‖Pm‖ > 1 · 1/4, or Q1 coincides with the top of U ,
which implies x1 > 3/8, and we have

‖Pm‖ > x2
1 + (

7

8
− x1) · 1

4
≥ 7

32
+ x1 · (x1 −

1

4
) ≥ 14

64
+

3

8
· 1

8
=

17

64
>

1

4
.

As Qs is in B3 we get ‖Ps‖ > 7/64 by Property 3. In both cases, we
get

‖σ‖ ≥ ‖Pm‖+ ‖Ps‖ > 1/4 + 7/64 = 11/32.

ii. xs + d > 1/8: This case is depicted in Fig. 10(f). By Property 4 we get

‖Ps‖ >
7.5/16 + d+ xs

4
>

7.5/16 + 2/16

4
=

9.5

64
.

Because Q1 intersects with B3, we know that the total length of the
medium square packing is greater than 7/8. Thus we get

‖σ‖ ≥ ‖Pm‖+ ‖Ps‖ > 7/8 · 1/4 + 9.5/64 > 23.5/64 > 11/32.

(b) Qs is (a buffer square) in B4:

Recall that we start packing medium squares coinciding with the top of U .
We fill the buffer region B4 from bottom to top. Let d be the distance of
Qs to the lower boundary of B4. We distinguish two cases for xs + d:

i. xs + d ≤ 1/8: Then Q1 perturbs the 1/8-high section at the bottom of
B4, i.e. we have x1 > 3/8. Because Qs is in B4, we get ‖Ps‖ > 17/64
by Property 5. Thus, in total we have

‖σ‖ ≥ ‖Q1‖+ ‖Ps‖ > (3/8)2 + 17/64 = 26/64 > 11/32.

ii. xs + d > 1/8: By Property 6 we have

‖Ps‖ >
1 + d+ xs

4
>

1 + 1/8

4
=

9

32
.

Because Q1 is a medium square, we have x ≥ 1/4 and get

‖σ‖ ≥ ‖Q1‖+ ‖Ps‖ > (1/4)2 + 9/32 = 11/32.
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(c) Qs is packed into M3 or M4:

By Property 8 and Lemma 17 we have Ã(H`) ≥ 5/32 and Ã(Hu) ≥ Ã(M3 \
Ei ∪M4) ≥ 6/32, respectively. Therefore, Ã(U) ≥ 11/32.

(d) Qs is a buffer square in Ei:

We start treating the end Ei of a main packing area Mi only if Mi \ Ei is
fully used. Therefore, this type of collision can be handled analogously to
the collision of Q0 with a square in Mi.

(e) Q1 overlaps with M2 but not with M1:

This only happens if Q1 provokes an overflow in the upper half of U and is
therefore packed into the second shelf of the Ceiling Packing; see Fig. 10(g).
In this case, the total area of squares from H1 is greater than 1/4. By
assumption, Qs is placed in M2 and we get an additional packing area of
at least 7/64 from small squares; see Property 7. In total, we have ‖σ‖ ≥
‖Pm‖+ ‖Ps‖ > 1/4 + 7/64 > 11/32.

(f) Q1 overlaps with M1:

Because Q1 intersects M1, the lower boundary of Q1 must have a distance
greater than 3/4 from the top of U ; see Fig. 10(h). Hence, ‖Pm‖ > 1/4 ·
(3/4 + 2/4) = 10/32. As no H1-square ever touches the left half of H`, we
must have an area of at least 1/2 · 1/8 = 2/32 occupied by small squares.
In total we get
‖σ‖ ≥ ‖Pm‖+ ‖Ps‖ > 10/32 + 2/32 > 11/32. ut

This concludes the proof of the main Theorem 3.

3 Packing into a Dynamic Container

Now we discuss the problem of online packing a sequence of squares into a dynamic
square container. At each stage, the container must be large enough to accommo-
date all objects; this requires keeping the container tight early on, but may require
increasing its edge length appropriately during the process.

In the following, we give a non-trivial family of instances, which prove that no
online algorithm can maintain a packing density greater than 3/7 for an arbitrary
input sequence of squares and introduce an online square packing algorithm that
maintains a packing density of 1/8 for an arbitrarily input sequence of squares.

3.1 An Upper Bound on δ

If the total area of the given sequence is unknown in advance, the problem of
finding a dense online packing becomes harder. As it turns out, a density of 1/2
cannot be achieved.

Theorem 4 There are sequences for which no deterministic online packing algorithm

can maintain a density strictly greater than 3/7 ≈ 0.4286.

Proof We construct an appropriate sequence of squares, depending on what choices
a deterministic player makes; see Fig. 11. At each stage, the player must place a
square Q3 into a corner position (Fig. 11(a)) or into a center position (Fig. 11(b));
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Fig. 10 Different types of collision that may appear if the total area of the input exceeds
11/32.
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the adversary responds by either requesting another square of the same size (a),
or two of the size of the current spanning box. This is repeated.

If the player keeps choosing corner positions, the density δi for the enclosing
square of size xi satisfies the recursion δi+1 = 1/4 ·δi+1/2, as shown in Fig. 11(d).
The sequence is decreasing and bounded from below, so solving the equation δ∞ =
1/4 · δ∞ + 1/2 yields limi→∞ δi = δ∞ = 2/3. If the player keeps choosing center
positions, the density δi for the enclosing square of size xi satisfies the recursion
δi+1 = 1/9 · δi + 2/3, as shown in Fig. 11(e). This sequence is also decreasing
and bounded from below, so solving the equation δ∞ = 1/9 · δ∞ + 2/3 yields
limi→∞ δi = δ∞ = 3/4. For mixed choices, the density lies in between. Therefore
the opponent can force the density below 3/4 + ε, for any ε > 0. Once that is the
case, with the center position occupied, the adversary can request a final square of
size 3/4 · x, where x is the size of the current spanning box. The resulting density

is arbitrarily close to 3/4·x2+(3/4·x)2

(x+3/4·x)2 = 3/7. If the center position does not get

occupied, the density is even worse. ut

It is an easy consequence of continuity that this upper bound can be lowered
by a very small amount by slightly decreasing the value for the center case, while
increasing the value for the corner case, until they are balanced. More specifically,
we can decrease the density for the center case by increasing the square sizes by
more than a factor of 2 at each step of the recursion. When only focusing on the
center case, the best such factor is 1 +

√
3, for an asymptotic density of

√
3− 1 =

0.73204 . . ., yielding a resulting final density of 0.42265 . . . as a lower bound for
the achievable value. However, this is much beyond what can actually be achieved
when also accounting for the corner case: the bounding box for each iteration
becomes a rectangle, so the worst-case density for the corner case increases quite
rapidly. This keeps the total upper bound for the final density much closer to
3/7 = 0.42857 . . .. As a consequence, we omit the tedious computations for the
resulting tiny improvement.

3.2 A Lower Bound on δ

When placing squares into a dynamic container, we cannot use our Recursive Shelf
Algorithm, as it requires allocating shelves from all four container boundaries,
which are not known in advance. However, we can adapt the Brick Algorithm
by [37], which we describe in the following.

The method is based on a partition of the unit square into bricks. Bricks are
rectangles with aspect ratio

√
2 (or 1/

√
2), which are well-known from the in-

ternational ISO 216 paper formats, in particular the common A series. The most
important property of these rectangles is that by bisecting a brick with dimensions
(b, b/

√
2), we create two new smaller bricks of size (b/2, b/

√
2). This way, we can

construct bricks with side lengths b2−k/2 and b2(−k−1)/2 for any k = 0, 1, . . . via a
recursive bisection. All of the bricks created this way are called subbricks of B. For
any square Q let Sb(Q) denote the smallest brick with side lengths b/(

√
2)k and

b/(
√

2)k+1that may contain Q. Obviously, there is some space left if Q is packed
into Sb(Q). Independent of the base b side length we can bound this free space as
follows.
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Lemma 17.1 Let Q be a square and b be a real number. Then
‖Sb(Q)‖

2
√

2
< ‖Q‖ ≤

‖Sb(Q)‖√
2

.

Proof Let s and
√

2s be the side lengths of SB(Q). By definition of Sb(Q), we have

s√
2

=
b

(
√

2)k+1
< x ≤ b

(
√

2)k
=: s

for some k ∈ N. With ‖Sb(Q)‖ = s ·
√

2s =
√

2s2 we get

‖Sb(Q)‖
2
√

2
=

√
2s2

2
√

2
=

(
s√
2

)2

< x2 = ‖Q‖

and ‖Q‖ = x2 ≤ s2 =
‖Sb(Q)‖√

2

In other words, with a strategy that packs squares into their respective smallest
subbrick, we cannot hope to generate a packing density higher than 1/(2

√
2). We

denote the bricks that contain a square occupied. All other bricks are called free.
Based on this subdivision, Januszewski and Lassak developed a recursive packing
algorithm, which they call the method of the first free fitting subbrick. They first
construct three bricks in the unit square as shown in Fig. 12(b). Then they pack
each square Q into a brick congruent to S1(Q) after recursively subdividing the
smallest free brick that can accomodate Q.

The Brick Algorithm:

1. Construct the bricks

B = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
√

2},

D1 = {(x1, x2) : 0 ≤ x1 ≤ 2−3/2, 3/4 ≤ x2 ≤ 1} and

D2 = {(x1, x2) : 2−3/2 ≤ x1 ≤ 2 · 2−3/2, 3/4 ≤ x2 ≤ 1}

2. For each incoming square Q:
(a) Let B be the first base brick in the order D1, D2, B that has a free subbrick
B′ of size greater or equal to S1(Q).

(b) If ‖B′‖ = ‖S1(Q)‖, then pack Q into B′.
(c) Otherwise, recursively bisect (one half of) the smallest subbrick of B′ until

a brick B′′ of size S1(Q) is created.
(d) Pack Q into B′′.

We call the bricks B, D1 and D2 the base bricks. Note that all three base bricks
have side length equal to a power of

√
2. That is, all (sub-)bricks created by the

algorithm have only side lengths equal to a power of
√

2, too.
In order to adapt this approach to our setting (with increasing instead of

decreasing brick size), we keep some properties, but adjust others. We still consider
bricks with side lengths equal to a power of

√
2 (and aspect ratio 1/

√
2 or

√
2).

We let Bk denote the brick of size (
√

2
k
,
√

2
k+1

) and let S(Q) denote the smallest
brick Bi that may contain a given square Q.

There are two crucial modifications: (1) The first square Q is packed into a
brick of size S(Q) with its lower left corner in the origin and (2) instead of always
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subdividing the existing bricks (starting with three fixed ones), we may repeatedly
double the current maximum existing brick Bmax to make room for large incoming
squares. Apart from that, we keep the same packing scheme: Place each square Q
into (a subbrick of) the smallest free brick that can contain Q; see Fig. 13 for an
illustration.

Theorem 5 For any input sequence of squares, the Dynamic Brick Algorithm main-

tains a packing density of at least 1/8.

Proof By construction, every occupied brick has a density of at least 1/(2
√

2). It
is easy to see that in every step of the algorithm at most half the area of Bmax
consists of free bricks; compare [37]. Because Bmax always contains all occupied
bricks (and thus all packed squares), the ratio of ‖Bmax‖ to the area of the smallest
enclosing square is at least 1/

√
2. Therefore, the algorithm maintains an overall

density of at least (1/(2
√

2)) · (1/2) · (1/
√

2) = 1/8. ut

3.3 Minimizing Container Size

The above results consider the worst-case ratio for the packing density. A closely
related question is the online optimization problem of maintaining a square con-
tainer with minimum edge length. The following is an easy consequence of Theo-
rem 5, as a square of edge length 2

√
2 can accommodate a unit area when packed

with density 1/8. By considering optimal offline packings for the class of examples
constructed in Theorem 4, it is straightforward to get a lower bound of 4/3 for
any deterministic online algorithm.

Corollary 2 Dynamic Brick Packing provides a competitive factor of 2
√

2 = 2.82 . . .
for packing an online sequence of squares into a square container with small edge length.

The same problem has a lower bound of 4/3 for the competitive factor.

4 Conclusion

We have presented progress on two natural variants of packing squares into a
square in an online fashion. The most immediate open question remains the critical
packing density for a fixed container, where the correct value may actually be less
than 1/2. Even though we invested a considerable amount of work into establishing
a lower bound greater than 1/3, we believe that there are alternative schemes that
could lead to further improvement.

Online packing into a dynamic container remains wide open. There is still
possible slack in both bounds; our feeling is that it should be easier to improve
the lower bound rather than the upper bound, as there is still considerable room
to employ more sophisticated recursive schemes, just like in the case of a fixed
container.

There are many interesting related questions. What is the critical density (of-
fline and online) for packing circles into a unit square? This was raised by Demaine
et al. [16]. In an offline setting, there is a lower bound of π/8 = 0.392 . . ., and an
upper bound of 2π

(2+
√

2)2
= 0.539 . . ., which is conjectured to be tight. Another

question is to consider the critical density as a function of the size of the largest
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object. In an offline context, the proof by Moon and Moser provides an answer,
but little is known in an online setting.
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Fig. 11 Different choices in the lower-bound sequence: (a) Packing after choosing corner
positions. (b) Packing after choosing a center position. (c) Recursion parameters for corner
positions. (d) Recursion parameters for center position. (e) Packing a last square.
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Fig. 12 (a) Subdivision Scheme of the Brick Concept: (Left) The recursive bisection of a brick
B. (Right) A brick (equal to SB(Q)) occupied by a square Q; the dashed line marks the upper
bound, the dotted line the lower bound on the possible side lengths of Q. (b) Partition of the
unit square U used by Januszewski and Lassak.
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Fig. 13 The modified Brick-Packing algorithm for an input square Q. Occupied bricks are
hatched, free bricks are blank. (a) A first square gets placed into the lower left corner, Bmax =
S(Q). (b) If S(Q) >Bmax, we double Bmax until Q fits. (c) If Q does not fit into Bmax, but
‖S(Q)‖ < ‖Bmax‖, we double Bmax and subdivide the resulting brick. (d) If Q fits into Bmax,
we pack it into the smallest free fitting subbrick.
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