Abstract
In the Binary Paintshop problem, there are m cars appearing in a sequence of length 2m, with each car occurring twice. Each car needs to be colored with two colors. The goal is to choose for each car, which of its occurrences receives either color, so as to minimize the total number of color changes in the sequence. We show that the Binary Paintshop problem is equivalent (up to constant factors) to the Minimum Uncut problem, under randomized reductions. By derandomizing this reduction for hard instances of the Min Uncut problem arising from the Unique Games Conjecture, we show that the Binary Paintshop problem is ω(1)-hard to approximate (assuming the UGC). This answers an open question from [BEH06,MS09,AH11].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: \(O(\sqrt{\log n})\) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In: 37th Annual ACM Symposium on Theory of Computing, pp. 573–581 (2005)
Andres, S.D., Hochstättler, W.: Some heuristics for the binary paint shop problem and their expected number of colour changes. J. Discrete Algorithms 9(2), 203–211 (2011)
Amini, H., Meunier, F., Michel, H., Mohajeri, A.: Greedy colorings for the binary paintshop problem. Journal of Discrete Algorithms 8(1), 8–14 (2010)
Bonsma, P.S., Epping, T., Hochstättler, W.: Complexity results on restricted instances of a paint shop problem for words. Discrete Applied Mathematics 154(9), 1335–1343 (2006)
Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3), 12 (2007)
Epping, T., Hochstättler, W., Oertel, P.: Some results on a Paint Shop problem for words. Electronic Notes in Discrete Mathematics 8, 31–33 (2001)
Khot, S.: On the power of unique 2-prover 1-round games. In: 34th Annual ACM Symposium on the Theory of Computing, pp. 767–775 (July 2002)
Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)
Meunier, F., Sebö, A.: Paintshop, odd cycles and necklace splitting. Discrete Applied Mathematics 157(4), 780–793 (2009)
Raz, R.: A parallel repetition theorem. SIAM Journal of Computing 27(3), 763–803 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gupta, A., Kale, S., Nagarajan, V., Saket, R., Schieber, B. (2013). The Approximability of the Binary Paintshop Problem. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-40328-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40327-9
Online ISBN: 978-3-642-40328-6
eBook Packages: Computer ScienceComputer Science (R0)