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Abstract

We compare the sample complexity of private learning [Kasiviswanathan et al. 2008] and saniti-
zation [Blum et al. 2008] under pure ǫ-differential privacy [Dwork et al. TCC 2006] and approximate

(ǫ, δ)-differential privacy [Dwork et al. Eurocrypt 2006]. We show that the sample complexity of these
tasks under approximate differential privacy can be significantly lower than that under pure differential
privacy.

We define a family of optimization problems, which we call Quasi-Concave Promise Problems, that
generalizes some of our considered tasks. We observe that a quasi-concave promise problem can be
privately approximated using a solution to a smaller instance of a quasi-concave promise problem. This
allows us to construct an efficient recursive algorithm solving such problems privately. Specifically, we
construct private learners for point functions, threshold functions, and axis-aligned rectangles in high
dimension. Similarly, we construct sanitizers for point functions and threshold functions.

We also examine the sample complexity of label-private learners, a relaxation of private learning
where the learner is required to only protect the privacy of the labels in the sample. We show that
the VC dimension completely characterizes the sample complexity of such learners, that is, the sample
complexity of learning with label privacy is equal (up to constants) to learning without privacy.
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1 Introduction

Learning is often applied to collections of sensitive data of individuals and it is important to protect the
privacy of these individuals. We examine the sample complexity of private learning [22] and a related task –
sanitization [7] – while preserving differential privacy [13]. We show striking differences between the required
sample complexity for these tasks under ǫ-differential privacy [13] (also called pure differential privacy) and
its variant (ǫ, δ)-differential privacy [11] (also called approximate differential privacy).

Differential privacy. Differential privacy protects the privacy of individuals by requiring that the infor-
mation of an individual does not significantly affect the output. More formally, an algorithm A satisfies the
requirement of Pure Differential Privacy if for every two databases that differ on exactly one entry, and for
every event defined over the output set of A, the probability of this event is close up to a multiplicative
factor of eǫ ≈ 1+ ǫ whether A is applied on one database or on the other. Approximate Differential Privacy
is a relaxation of pure differential privacy where the above guarantee needs to be satisfied only for events
whose probability is at least ≈ δ. We show that even negligible δ > 0 can have a significant effect on sample
complexity of private learning and sanitization.

Private Learning. Private learning was introduced in [22] as a combination of Valiant’s PAC learning
model [29] and differential privacy. For now, we can think of a private learner as a differentially private
algorithm that operates on a set of classified random examples, and outputs a hypothesis that misclassifies
fresh examples with probability at most (say) 1

10 . The work on private learning has mainly focused on
pure privacy. On the one hand, Blum et al. [6] and Kasiviswanathan et al. [22] have showed, via generic
constructions, that every finite concept class C can be learned privately, using sample complexity proportional
to poly(log |C|) (often efficiently). On the other hand, a significant difference was shown between the sample
complexity of traditional (non-private) learners (crystallized in terms of VC(C) and smaller than log |C| in
many interesting cases) and private learners. As an example, let POINTd be the class of point functions over
the domain {0, 1}d (these are the functions that evaluate to one on exactly one point of the domain and to
zero elsewhere). Consider the task of properly learning POINTd where, after consulting its sample, the learner
outputs a hypothesis that is by itself in POINTd. Non-privately, learning POINTd requires merely a constant
number of examples (as VC(POINTd) = 1). Privately, Ω(d) examples are required [3]. Curiously, the picture
changes when the private learner is allowed to output a hypothesis not in POINTd (such learners are called
improper), as the sample complexity can be reduced to O(1) [3]. This, however, comes with a price, as it was
shown in [3] that such learners must return hypotheses that evaluate to one on exponentially many points
in {0, 1}d and, hence, are very far from all functions in POINTd.

A complete characterization for the sample complexity of pure-private learners was recently given in [4],
in terms of a new dimension – the Representation Dimension, that is, given a class C, the number of samples
needed and sufficient for privately learning C is Θ(RepDim(C)). Following that, Feldman and Xiao [17]
showed an equivalence between the representation dimension of a concept C and the randomized one-way
communication complexity of the evaluation problem for concepts from C. Using this equivalence they
separated the sample complexity of pure-private learners from that of non-private ones. For example, they
showed a lower bound of Ω(d) on the sample complexity of every pure-private (proper or improper) learner
for the class THRESHd of threshold functions over the interval [0, 2d− 1]. This is a strong separation from the
non-private sample complexity, which is O(1) (as the VC dimension of this class is constant).

We show that the sample complexity of proper learning with approximate differential privacy can be
significantly lower than that satisfying pure differential privacy. Our starting point for this work is an
observation that with approximate (ǫ, δ)-differential privacy, sample complexity of O(log(1/δ)) suffices for
learning points properly. This gives a separation between pure and approximate proper private learning for
δ = 2−o(d).

Sanitization. The notion of differentially private sanitization was introduced in the work of Blum et al. [7].
A sanitizer for a class of predicates C is a differentially private mechanism translating an input database S
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to an output database Ŝ such that Ŝ (approximately) agrees with S on the fraction of the entries satisfying
ϕ for all ϕ ∈ C, where every predicate ϕ ∈ C is a function from X to {0, 1}. Blum et al. gave a generic
construction of pure differentially private sanitizers exhibiting sample complexity O(VC(C) log |X |). Lower
bounds partially supporting this sample complexity were given by [25, 3, 21]. As with private learning,
we show significant differences between the sample complexity required for sanitization of simple predicate
classes under pure and approximate differential privacy. We note that the construction of sanitizers is not
generally computationally feasible [14, 28, 27].

1.1 Our Contributions

To simplify the exposition, we omit in this section dependency on all variables except for d, corresponding
to the representation length of domain elements.

Tools. A recent instantiation of the Propose-Test-Release (PTR) framework [12] by Smith and Thakurta [26]
results, almost immediately, with a proper learner for points, exhibiting O(1) sample complexity while pre-
serving approximate differential privacy. This simple technique does not suffice for our other constructions
of learners and sanitizers, and we, hence, introduce new tools for coping with proper private learning of
thresholds and axis-aligned rectangles, and sanitization for point functions and thresholds:

• Choosing mechanism: Given a low-sensitivity quality function, one can use the exponential mecha-
nism [24] to choose an approximately maximizing solution. This requires, in general, a database of size
logarithmic in the number of possible solutions. We identify a sub family of low-sensitivity functions,
called bounded-growth functions, for which it is possible to significantly reduce the necessary database
size when using the exponential mechanism.

• Recursive algorithm for quasi-concave promise problems: We define a family of optimization
problems, which we call Quasi-Concave Promise Problems. The possible solutions are ordered, and
quasi-concavitymeans that if two solutions f ≤ h have quality of at least X , then any solution f ≤ g ≤ h
also has quality of at least X . The optimization goal is, when there exists a solution with a promised
quality of (at least) r, to find a solution with quality ≈ r. We observe that a quasi-concave promise
problem can be privately approximated using a solution to a smaller instance of a quasi-concave promise
problem. This allows us to construct an efficient recursive algorithm solving such problems privately.
We show that the task of learning THRESHd is, in fact, a quasi-concave promise problem, and it can
be privately solved using our algorithm with sample size roughly 2O(log∗ d). Sanitization for THRESHd
does not exactly fit the model of quasi-concave promise problems but can still be solved by iteratively
defining and solving a small number of quasi-concave promise problems.

Implications for Private Learning and Sanitization. We give new private proper-learning algorithms
for the classes POINTd and THRESHd. We also construct a new private proper-learner for (a discrete version
of) the class of all axis-aligned rectangles over n dimensions. Our algorithms exhibit sample complexity that
is significantly lower than bounds given in prior work, separating pure and approximate private learning.
Similarly, we construct sanitizers for POINTd and THRESHd, again with sample complexity that is significantly
lower than bounds given in prior work, separating sanitization in the pure and approximate privacy cases.
Our algorithms are time-efficient.

Sanitization vs. Private Learning. Gupta et al. [18] have given reductions in both directions between
agnostic learning of a concept class C, and the sanitization task for the same class C. The learners and
sanitizers they consider are limited to access their data via statistical queries [23] (such algorithm can be
easily transformed to satisfy differential privacy [6]). In Section 5 we show a similar reduction from the
task of privately learning a concept class C to the sanitization task of C, where the sanitizer’s access to
the database is unrestricted. This allows us to exploit lower bounds on the sample complexity of private
learners and show an explicit class of predicates C over a domain X for which every private sanitizer requires
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databases of size Ω(VC(C) log |X |). A similar lower bound was shown by Hardt and Rothblum [21], achieving
tighter results in terms of the approximation parameter. Their work proves the existence of such a concept
class, but does not give an explicit one.

Label Privacy. In Section 6 we examine private learning under a relaxation of differential privacy called
label privacy (see [9] and references therein), where the learner is required to only protect the privacy of the
labels in the sample. Chaudhuri et al. [9] have proved lower bounds for label-private learners in terms of the
doubling dimension of the target concept class. We show that the VC dimension completely characterizes
the sample complexity of such learners, that is, the sample complexity of learning with label privacy is equal
(up to constants) to learning without privacy.

1.2 Open Questions

This work raises two kinds of research directions. First, this work presents (time and sample efficient) private
learners and sanitizers for relatively simple concept classes. It would be natural to try and construct private
learners and sanitizers for more complex concept classes. In particular, constructing a (time and sample
efficient) private learner for hyperplanes would be very interesting to the community.

Another very interesting research direction is to try and understand the sample complexity of approximate-
private learners. Currently, no lower bounds are known on the sample complexity of such learners. On the
other hand, no generic construction for such learners is known to improve the sample complexity achieved by
the generic construction of Kasiviswanathan et al. [22] for pure-private learners. Characterizing the sample
complexity of approximate-private learners is a very interesting open question.

1.3 Other Related Work

Most related to our work is the work on private learning and its sample complexity [22, 6, 3, 9] and the
early work on sanitization [7] mentioned above. Another related work is the work of De [10], who proved
a separation between pure ǫ-differential privacy and approximate (ǫ, δ)-differential privacy. Specifically, he
demonstrated that there exists a query where it is sufficient to add noise O(

√
n log(1/δ)) when δ > 0 and

Ω(n) noise is required when δ = 0. Earlier work by Hardt and Talwar [20] separated pure from approximate
differential privacy for δ = n−O(1).

Another interesting gap between pure and approximate differential privacy is the following. Blum et
al. [7] have given a generic construction of pure-private sanitizers, in which the sample complexity grows as
1
α3 (where α is the approximation parameter). Following that, Hardt and Rothblum [19] showed that with
approximate-privacy, the sample complexity can be reduce to grow as 1

α2 . Currently, it is unknown whether
this gap is essential.

2 Preliminaries

Notations. We use Oγ(f(t)) as a shorthand for O(h(γ)·f(t)) for some non-negative function h. In informal

discussions, we sometimes use Õ(f(t)) instead of O(f(t) · polylog(f(t))). For example, 2log
∗(d) · log∗(d) =

Õ
(
2log

∗(d)
)
.

We use X to denote an arbitrary domain, and Xd for the domain {0, 1}d. We use Xm (and respectively
Xm

d ) for the cartesian mth power of X , i.e., Xm = (X)m, and use X∗ =
⋃∞

m=0 X
m.

Given a distribution D over a domain X , we denote D(j) , Prx∼D[x = j] for j ∈ X , and D(J) ,

Prx∼D[x ∈ J ] for J ⊆ X .

2.1 Differential Privacy

Differential privacy aims at protecting information of individuals. We consider a database, where each entry
contains information pertaining to an individual. An algorithm operating on databases is said to preserve
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differential privacy if a change of a single record of the database does not significantly change the output
distribution of the algorithm. Intuitively, this means that whatever is learned about an individual could also
be learned with her data arbitrarily modified (or without her data). Formally:

Definition 2.1. Databases S1 ∈ Xm and S2 ∈ Xm over a domain X are called neighboring if they differ
in exactly one entry.

Definition 2.2 (Differential Privacy [13, 11]). A randomized algorithm A is (ǫ, δ)-differentially private if
for all neighboring databases S1, S2 ∈ Xm, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≤ exp(ǫ) · Pr[A(S2) ∈ F ] + δ. (1)

The probability is taken over the random coins of A. When δ = 0 we omit it and say that A preserves
ǫ-differential privacy.

We use the term pure differential privacy when δ = 0 and the term approximate differential privacy when
δ > 0, in which case δ is typically a negligible function of the database size m.

We will later present algorithms that access their input database using (several) differentially private
mechanisms. We will use the following composition theorems.

Theorem 2.3 ([11]). If A1 and A2 satisfy (ǫ1, δ1) and (ǫ2, δ2) differential privacy, respectively, then their
concatenation A(S) = 〈A1(S), A2(S)〉 satisfies (ǫ1 + ǫ2, δ1 + δ2)-differential privacy.

Moreover, a similar theorem holds for the adaptive case, where a mechanism interacts with k adaptively
chosen differentially private mechanisms.

Theorem 2.4 ([11, 12]). A mechanism that permits k adaptive interactions with mechanisms that preserves
(ǫ, δ)-differential privacy (and does not access the database otherwise) ensures (kǫ, kδ)-differential privacy.

Note that the privacy guaranties of the above bound deteriorates linearly with the number of interactions.
By bounding the expected privacy loss in each interaction (as opposed to worst-case), Dwork et al. [15] showed
the following stronger composition theorem, where privacy deteriorates (roughly) as

√
kǫ+ kǫ2 (rather than

kǫ).

Theorem 2.5 ([15], restated). Let 0 < ǫ, δ′ ≤ 1, and let δ ∈ [0, 1]. A mechanism that permits k adaptive
interactions with mechanisms that preserves (ǫ, δ)-differential privacy (and does not access the database
otherwise) ensures (ǫ′, kδ + δ′)-differential privacy, for ǫ′ =

√
2k ln(1/δ′) · ǫ+ 2kǫ2.

2.2 Preliminaries from Learning Theory

2.2.1 The PAC Model

A concept c : X → {0, 1} is a predicate that labels examples taken from the domain X by either 0 or 1. A
concept class C over X is a set of concepts (predicates) mapping X to {0, 1}. A learning algorithm is given
examples sampled according to an unknown probability distribution D over X , and labeled according to an
unknown target concept c ∈ C. The learning algorithm is successful when it outputs a hypothesis h that
approximates the target concept over samples from D. More formally:

Definition 2.6. The generalization error of a hypothesis h : X → {0, 1} is defined as

errorD(c, h) = Pr
x∼D

[h(x) 6= c(x)].

If errorD(c, h) ≤ α we say that h is α-good for c and D.
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Definition 2.7 (PAC Learning [29]). Algorithm A is an (α, β,m)-PAC learner for a concept class C over
X using hypothesis class H if for all concepts c ∈ C, all distributions D on X, given an input of m samples
S = (z1, . . . , zm), where zi = (xi, c(xi)) and each xi is drawn i.i.d. from D, algorithm A outputs a hypothesis
h ∈ H satisfying

Pr[errorD(c, h) ≤ α] ≥ 1− β.

The probability is taken over the random choice of the examples in S according to D and the coin tosses of
the learner A. If H ⊆ C then A is called a proper PAC learner; otherwise, it is called an improper PAC
learner.

Definition 2.8. For a labeled sample S = (xi, yi)
m
i=1, the empirical error of h is

errorS(h) =
1

m
|{i : h(xi) 6= yi}|.

2.2.2 The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis (VC) Dimension is a combinatorial measure of concept classes, which characterizes
the sample size of PAC learners.

Definition 2.9 ([30]). Let C be a concept class over a domain X, and let B = {b1, . . . , bℓ} ⊆ X. The set of
all dichotomies (behaviors) on B that are realized by C is

ΠC(B) =
{
(c(b1), . . . , c(bℓ)) : c ∈ C

}
.

Observe that ΠC(B) is a subset of {0, 1}ℓ (as c ∈ C maps into {0, 1}). The set of dichotomies ΠC(B)
can be viewed as the “projection” of C on B.

Definition 2.10 ([30]). A set B ⊆ X is shattered by C if ΠC(B) = {0, 1}ℓ (where ℓ = |B|).

That is, B is shattered by C if C realizes all possible dichotomies over B.

Definition 2.11 (VC-Dimension [30]). The VC-Dimension of a concept class C (over a domain X), denoted
as VC(C), is the cardinality of the largest set B ⊆ X shattered by C. If arbitrarily large finite sets can be
shattered by C, then VC(C) =∞.

Observe that as ΠC(B) ≤ |C| a set B can be shattered only if |B| ≤ log |C| and hence VC(C) ≤ log |C|.

2.2.3 VC Bounds

Classical results in computational learning theory state that a sample of size θ(VC(C)) is both necessary
and sufficient for the PAC learning of a concept class C. The following two theorems give upper and lower
bounds on the sample complexity.

Theorem 2.12 ([16]). Any algorithm for PAC learning a concept class C must have sample complexity

Ω(VC(C)
α ), where α is the approximation parameter.

Theorem 2.13 (VC-Dimension Generalization Bound [30, 8]). Let C and D be a concept class and a
distribution over a domain X. Let α, β > 0, and m ≥ 8

α (VC(C) ln(16α ) + ln( 2β )). Fix a concept c ∈ C, and

suppose that we draw a sample S = (xi, yi)
m
i=1, where xi are drawn i.i.d. from D and yi = c(xi). Then,

Pr[∃h ∈ C s.t. errorD(h, c) > α ∧ errorS(h) = 0] ≤ β.

So, for any concept class C, any algorithm that takes a sample of m = Ωα,β(VC(C)) labeled examples and
produces as output a concept h ∈ C that agrees with the sample is a PAC learner for C. Such an algorithm
is a PAC learner for C using C (that is, both the target concept and the returned hypotheses are taken from
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the same concept class C), and, therefore, there always exist a hypothesis h ∈ C with errorS(h) = 0 (e.g.,
the target concept itself).

The next theorem handles (in particular) the agnostic case, in which a learning algorithm for a concept
class C is using a hypotheses class H 6= C, and given a sample S (labeled by some c ∈ C), a hypothesis h
with errorS(h) = 0 might not exist in H .

Theorem 2.14 (VC-Dimension Agnostic Generalization Bound [2, 1]). Let D and H be a distribution and a
concept class over a domain X, and let f : X → {0, 1} be some concept, not necessarily in H. For a sample

S = (xi, f(xi))
m
i=1 where m ≥ 50VC(H)

α2 ln( 1
αβ ) and {xi} are drawn i.i.d. from D, it holds that

Pr
[
∀ h ∈ H :

∣∣errorD(h, f)− errorS(h)
∣∣ ≤ α

]
≥ 1− β.

Notice that in the agnostic case the sample complexity is proportional to 1
α2 , as opposed to 1

α when
learning a class C using C.

2.3 Private Learning

In private learning, we would like to accomplish the same goal as in non-private learning, while protecting
the privacy of the input database.

Definition 2.15 (Private PAC Learning [22]). Let A be an algorithm that gets an input S = {z1, . . . , zm}.
Algorithm A is an (α, β, ǫ, δ,m)-PPAC learner for a concept class C over X using hypothesis class H if

Privacy. Algorithm A is (ǫ, δ)-differentially private (as in Definition 2.2);

Utility. Algorithm A is an (α, β,m)-PAC learner for C using H (as in Definition 2.7).

When δ = 0 (pure privacy) we omit it from the list of parameters.

Note that the utility requirement in the above definition is an average-case requirement, as the learner
is only required to do well on typical samples (i.e., samples drawn i.i.d. from a distribution D and correctly
labeled by a target concept c ∈ C). In contrast, the privacy requirement is a worst-case requirement, and
Inequality (1) must hold for every pair of neighboring databases (no matter how they were generated, even
if they are not consistent with any concept in C).

2.4 Sanitization

Given a database S = (x1, . . . , xm) containing elements from some domain X , the goal of sanitization
mechanisms is to output (while preserving differential privacy) another database Ŝ that is in some sense
similar to S. This returned database Ŝ is called a sanitized database.

Let c : X → {0, 1} be a concept. The counting query Qc : X
∗ → [0, 1] is

Qc(S) =
1

|S| ·
∣∣∣{i : c(xi) = 1}

∣∣∣.

That is, Qc(S) is the fraction of the entries in S that satisfy the concept c. Given a database S, a sanitizer
for a concept class C is required to output a sanitized database Ŝ s.t. Qc(S) ≈ Qc(Ŝ) for every c ∈ C. For
computational reasons, sanitizers are sometimes allowed not to return an actual database, but rather a data
structure capable of approximating Qc(S) for every c ∈ C.

Definition 2.16. Let C be a concept class and let S be a database. A function Est : C → [0, 1] is called
α-close to S if |Qc(S) − Est(c)| ≤ α for every c ∈ C. If, furthermore, Est is defined in terms of a database
Ŝ, i.e., Est(c) = Qc(Ŝ), we say that Ŝ is α-close to S.
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Definition 2.17 (Sanitization [7]). Let C be a class of concepts mapping X to {0, 1}. Let A be an algorithm
that on an input database S ∈ X∗ outputs a description of a function Est : C → [0, 1]. Algorithm A is an
(α, β, ǫ, δ,m)-improper-sanitizer for predicates in the class C, if

1. A is (ǫ, δ)-differentially private;

2. For every input S ∈ Xm, it holds that Pr
A

[Est is α-close to S] ≥ 1− β.

The probability is over the coin tosses of algorithm A. If on an input database S algorithm A outputs another
database Ŝ ∈ X∗, and Est(·) is defined as Est(c) = Qc(Ŝ), then algorithm A is called a proper-sanitizer (or
simply a sanitizer). As before, when δ = 0 (pure privacy) we omit it from the set of parameters.

Remark 2.18. Note that without the privacy requirements sanitization is a trivial task as it is possible
to simply output the input database S. Furthermore, ignoring computational complexity, an (α, β, ǫ, δ,m)-
improper-sanitizer can always be transformed into a (2α, β, ǫ, δ,m)-sanitizer, by finding a database Ŝ of m
entries that is α-close to Est. Such a database must exist except with probability β (as in particular S is
α-close to Est), and is 2α-close to S (by the triangle inequality).

The following theorems state some of the known results on the sample complexity of pure-privacy sani-
tizers. We start with an upper bound on the necessary sample complexity.

Theorem 2.19 (Blum et al. [7]). There exists a constant Γ such that for any class of predicates C over a
domain X, and any parameters α, β, ǫ, there exists an (α, β, ǫ,m)-sanitizer for C, provided that the size of
the database, denoted m, is at least

m ≥ Γ

(
log |X | · VC(C) · log(1/α)

α3ǫ
+

log(1/β)

ǫα

)
.

The algorithm might not be efficient.

The above theorem states that, in principle, data sanitization is possible. The input database may be
required to be as big as the representation size of elements in X . The next theorem states a general lower
bound (far from the above upper bound) on the sample complexity of any concept class C. Better bounds
are known for specific concept classes [21].

Theorem 2.20 (Blum et al. [7]). Let C be a class of predicates, and let m ≤ VC(C)
2 . For any 0 < β < 1

bounded away from 1 by a constant, for any ǫ ≤ 1, if A is an (α, β, ǫ,m)-sanitizer for C, then α ≥ 1
4+16ǫ .

Recall that a proper sanitizer operates on an input database S ∈ Xm, and outputs a sanitized database
Ŝ ∈ X∗. The following is a simple corollary of Theorem 2.14, stating that the size of Ŝ does not necessarily
depend on the size of the input database S.

Theorem 2.21. Let C be a concept class. For any database S there exists a database Ŝ of size n =

O(VC(C)
α2 log( 1

α )) such that maxh∈C |Qh(S)−Qh(Ŝ)| ≤ α.

In particular, the above theorem implies that an (α, β, ǫ, δ,m)-sanitizer A can always be transformed
into a (2α, β, ǫ, δ,m)-sanitizer A′ s.t. the sanitized databases returned by A′ are always of fixed size n =

O(VC(C)
α2 log( 1

α )). This can be done by finding a database Ŝ of n entries that is α-close to the sanitized

database returned by A. Using the triangle inequality, Ŝ is (w.h.p.) 2α-close to the input database.

2.5 Basic Differentially-Private Mechanisms

2.5.1 The Laplace Mechanism

The most basic constructions of differentially private algorithms are via the Laplace mechanism as follows.
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Definition 2.22 (The Laplace Distribution). A random variable has probability distribution Lap(b) if its

probability density function is f(x) = 1
2b exp(−

|x|
b ), where x ∈ R.

Definition 2.23 (Sensitivity). A function f : Xm → Rn has sensitivity k if for every neighboring D,D′ ∈
Xm, it holds that ||f(D)− f(D′)||1 ≤ k.

Theorem 2.24 (The Laplacian Mechanism [13]). Let f : Xm → Rn be a sensitivity k function. The
mechanism A that on input D ∈ Xm adds independently generated noise with distribution Lap(kǫ ) to each of
the n output terms of f(D) preserves ǫ-differential privacy. Moreover,

Pr
[
∃i s.t. |Ai(D)− fi(D)| > ∆

]
≤ n · exp

(
− ǫ∆

k

)
,

where Ai(D) and fi(D) are the ith coordinates of A(D) and f(D).

2.5.2 The Exponential Mechanism

We next describe the exponential mechanism of McSherry and Talwar [24]. Let X be a domain and H a
set of solutions. Given a quality function q : X∗ ×H → N, and a database S ∈ X∗, the goal is to chooses
a solution h ∈ H approximately maximizing q(S, h). The mechanism chooses a solution probabilistically,
where the probability mass that is assigned to each solution h increases exponentially with its quality q(S, h):

Input: parameter ǫ, finite solution set H , database S ∈ Xm, and a sensitivity 1 quality function q.

1. Randomly choose h ∈ H with probability exp(ǫ·q(S,h)/2)∑
f∈H exp(ǫ·q(S,f)/2) .

2. Output h.

Proposition 2.25 (Properties of the Exponential Mechanism). (i) The exponential mechanism is ǫ- differ-
entially private. (ii) Let ê , maxf∈H{q(S, f)} and ∆ > 0. The exponential mechanism outputs a solution h
such that q(S, h) ≤ (ê−∆m) with probability at most |H | · exp(−ǫ∆m/2).

Kasiviswanathan et al. [22] showed in 2008 that the exponential mechanism can be used as a generic
private learner – when used with the quality function q(S, h) = |{i : h(xi) = yi}|, the probability that the
exponential mechanism outputs a hypothesis h such that errorS(h) > minf∈H{errorS(f)} + ∆ is at most
|H | · exp(−ǫ∆m/2). This results in a generic private proper-learner for every finite concept class C, with
sample complexity Oα,β,ǫ(log |C|).

2.5.3 Stability and Privacy – Adist

We restate a simplified variant of algorithm Adist by Smith and Thakurta [26], which is an instantiation
of the Propose-Test-Release framework [12]. Let q : X∗ × H → N be a sensitivity-1 quality function over
a domain X and a set of solutions H . Given a database S ∈ X∗, the goal is to choose a solution h ∈ H
maximizing q(S, h), under the assumption that the optimal solution h scores much better than any other
solution in H .

Algorithm Adist

Input: parameters ǫ, δ, database S ∈ X∗, sensitivity-1 quality function q.

1. Let h1 6= h2 be two highest score solutions in H , where q(S, h1) ≥ q(S, h2).

2. Let gap = q(S, h1)− q(S, h2) and gap∗ = gap + Lap(1ǫ ).

3. If gap∗ < 1
ǫ log(

1
δ ) then output ⊥ and halt.

4. Output h1.
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Proposition 2.26 (Properties of Adist [26]). (i) Algorithm Adist is (ǫ, δ)- differentially private. (ii) When
given an input database S for which gap ≥ 1

ǫ log(
1
βδ ), algorithm Adist outputs h1 maximizing q(h, S) with

probability at least (1 − β).

2.6 Concentration Bounds

Let X1, . . . , Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for some
0 < p < 1. Clearly, E[

∑
i Xi] = pn. The Chernoff bounds show that the sum is concentrated around this

expected value:

Pr
[∑

i
Xi > (1 + δ)pn

]
≤ exp

(
−pnδ2/3

)
for δ > 0,

Pr
[∑

i
Xi < (1− δ)pn

]
≤ exp

(
−pnδ2/2

)
for 0 < δ < 1.

3 Learning with Approximate Privacy

We present proper (ǫ, δ)-private learners for two simple concept classes, POINTd and THRESHd, demonstrating
separations between pure and approximate private proper learning.

3.1 (ǫ, δ)-PPAC Learner for POINTd

Definition 3.1. For j ∈ Xd let cj : Xd → {0, 1} be defined as cj(x) = 1 if x = j and cj(x) = 0 otherwise.
Define the concept class POINTd = {cj}j∈Xd

.

Note that the VC dimension of POINTd is 1, and, therefore, there exists a proper non-private learner
for POINTd with sample complexity Oα,β(1). Beimel et al. [3] proved that every proper ǫ-private learner
for POINTd must have sample complexity Ω(d) = Ω(log | POINTd |). They also showed that there exists an
improper ǫ-private learner for this class, with sample complexity Oα,β,ǫ(1). An alternative private learner
for this class was presented in [4].

As we will now see, algorithm Adist (defined in Section 2.5) can be used as a proper (ǫ, δ)-private learner
for POINTd with sample complexity Oα,β,ǫ,δ(1). This is our first (and simplest) example separating the sample
complexity of pure and approximate private proper-learners. Consider the following algorithm.

Input: parameters α, β, ǫ, δ, and a database S ∈ (Xd+1)
m.

1. For every x ∈ Xd, define q(S, x) as the number of appearances of (x, 1) in S.

2. Execute Adist on S with the quality function q and parameters α
2 ,

β
2 , ǫ, δ.

3. If the output was j then return cj .

4. Else, if the output was ⊥ then return a random ci ∈ POINTd.

Lemma 3.2. Let α, β, ǫ, δ be s.t. 1
αβ ≤ 2d. The above algorithm is an efficient (α, β, ǫ, δ)-PPAC proper

learner for POINTd using a sample of m = O
(

1
αǫ ln(

1
βδ )
)
labeled examples.

For intuition, consider a target concept cj and an underlying distribution D. Whenever D(j) is noticeable,
a typical sample S contains many copies of the point j labeled as 1. As every other point i 6= j will be
labeled as 0, we expect q(S, j) to be significantly higher than any other q(S, i), and we can use algorithm
Adist to identify j.
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Proof. As algorithm Adist is (ǫ, δ)-differentially private, all that remains is the utility analysis. Fix a target
concept cℓ ∈ POINTd and a distribution D on Xd. In a typical sample S, the only point that can appear with
the label 1 is ℓ, and algorithm Adist has two possible outputs: ℓ,⊥.

If D(ℓ) > α then (using the Chernoff bound), with probability at least
(
1− exp(−αm

8 )
)
, the labeled

example (ℓ, 1) appears in S at least r = αm
2 times. Note that q(S, ℓ) ≥ r, and every i 6= ℓ has quality

q(S, i) = 0. For m ≥ 8
αǫ ln(

4
βδ ), by Proposition 2.26, this gap is big enough s.t. algorithm Adist outputs ℓ

with probability at least (1 − β
2 ). Therefore, when D(ℓ) > α, the probability of A outputting an α-good

solution is at least (1− exp(−αm
8 ))(1 − β

2 ), which is at least (1 − β) for m ≥ 8
α ln( 2β ).

If, on the other hand, D(ℓ) ≤ α, then algorithm A will fail to output an α-good solution only if Adist

outputs ⊥, and algorithm A chooses a hypothesis ci s.t. i 6= ℓ and D(i) > α. But there could be at most 1
α

such points, and the probability of A failing is at most 1
α2d

. Assuming 2d ≥ 1
αβ , this probability is at most

β.

Remark 3.3. Recall that the above algorithm outputs a random ci ∈ POINTd whenever Adist outputs ⊥. In
order for this random ci to be good (w.h.p.) we needed 2d (i.e., the number of possible concepts) to be at least
1
αβ . This requirement could be avoided by outputting the all zero hypothesis c0 ≡ 0 whenever Adist outputs
⊥. However, this approach results in a proper learner only if we add the all zero concept to POINTd.

3.2 Towards a Proper (ǫ, δ)-PPAC Learner for THRESHd

Definition 3.4. For 0 ≤ j ≤ 2d let cj : Xd → {0, 1} be defined as cj(x) = 1 if x < j and cj(x) = 0 otherwise.
Define the concept class THRESHd = {cj}0≤j≤2d .

Note that VC(THRESHd) = 1, and, therefore, there exists a proper non-private learner for THRESHd with
sample complexity Oα,β(1). As | THRESHd | = 2d+1, one can use the generic construction of Kasiviswanathan
et al. [22] and get a proper ǫ-private learner for this class with sample complexity Oα,β,ǫ(d). Feldman and
Xiao [17] showed that this is in fact optimal, and every ǫ-private learner for this class (proper or improper)
must have sample complexity Ω(d).

Our learner for POINTd relied on a strong “stability” property of the problem: Given a labeled sample,
either a random concept is (w.h.p.) a good output, or, there is exactly one consistent concept in the class,
and every other concept has large empirical error. This, however, is not the case when dealing with THRESHd.
In particular, many hypotheses can have low empirical error, and changing a single entry of a sample S can
significantly affect the set of hypotheses consistent with it.

In Section 3.3, we present a proper (ǫ, δ)-private learner for THRESHd with sample complexity (roughly)
2O(log∗(d)). We use this section for motivating the construction. We start with two simplifying assumptions.
First, when given a labeled sample S, we aim at choosing a hypothesis h ∈ THRESHd approximately minimizing
the empirical error (rather than the generalization error). Second, we assume that we are given a “diverse”
sample S that contains many points labeled as 1 and many points labeled as 0. Those two assumptions (and
any other informalities made hereafter) will be removed in Section 3.3.

Assume we are given as input a sample S = (xi, yi)
m
i=1 labeled by some unknown cℓ ∈ THRESHd. We

would now like to choose a hypothesis h ∈ THRESHd with small empirical error on S, and we would like to
do so while accessing the sample S only through differentially private tools.

We refer to points labeled as 1 in S as ones, and to points labeled as 0 as zeros. Imagine for a moment
that we already have a differentially private algorithm that given S outputs an interval G ⊆ Xd with the
following two properties:

1. The interval G contains “a lot” of ones, and “a lot” of zeros in S.

2. Every interval I ⊆ Xd of length ≤ |G|
k does not contain, simultaneously, “too many” ones and “too

many” zeros in S, where k is some constant.

Such an interval will be referred to as a k-good interval. Note that a k-good interval is, in particular, an
ℓ-good interval for every ℓ ≥ k. Figure 1 illustrates such an interval G, where the dotted line represents the
(unknown) target concept, and the bold dots correspond to sample points.
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G

Figure 1: An illustration of a 4-good interval G.

Given such a 4-good interval G, we can (without using the sample S) define a set H of five hypotheses
s.t. at least one of them has small empirical error. To see this, consider Figure 2, where G is divided into
four equal intervals g1, g2, g3, g4, and five hypotheses h1, . . . , h5 are defined s.t. the points where they switch
from one to zero are located at the edges of g1, g2, g3, g4.

Now, as the interval G contains both ones and zeros, it must be that the target concept cℓ switches from
1 to 0 inside G. Assume without loss of generality that this switch occurs inside g2. Note that g2 is of length
|G|
4 and, therefore, either does not contain too many ones, and h2 is “close” to the target concept, or does
not contain too many zeros, and h3 is “close” to the target concept. For this argument to go through we
need “not too many” to be smaller than αm (say 3

4αm), where α is our approximation parameter and m is
the sample size.

g1 g2 g3 g4

h1 h2 h3 h4
h5

Figure 2: Extracting a small set of hypotheses from a good interval.

After defining such a set H , we could use the exponential mechanism to choose a hypothesis h ∈ H with
small empirical error on S. As the size of H is constant, this requires only a constant number of samples. To
conclude, finding a 4-good interval G (while preserving privacy) is sufficient for choosing a good hypothesis.
We next explain how to find such an interval.

Assume, for now, that we have a differentially private algorithm that given a sample S, returns an interval
length J s.t. there exists a 2-good interval G ⊆ Xd of length |G| = J . This length J is used to find an explicit
4-good interval as follows. Divide Xd into intervals {Ai} of length 2J , and into intervals {Bi} of length 2J
right shifted by J as in Figure 3.

A1 A2 A3 A4 A4

B1 B2 B3 B4

Figure 3: Dividing the axis Xd into intervals of length 2J .

As the promised 2-good interval G is of length J , at least one of the above intervals contains G. We next
explain how to privately choose such interval. If, e.g., G ⊆ A2 then A2 contains both a lot of zeros and a
lot of ones. The target concept must switch inside A2, and, therefore, every other Ai 6= A2 cannot contain
both zeros and ones. For every interval Ai, define its quality q(Ai) to be the minimum between the number
of zeros in Ai and the number of ones in Ai. Therefore, q(A2) is large, while q(Ai) = 0 for every Ai 6= A2.
That is, A2 scores much better than any other Ai under this quality function q. The sensitivity of q() is one
and we can use algorithm Adist to privately identify A2. It suffices, e.g., that q(A2) ≥ 1

4αm, and we can,
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therefore, set our “a lot” bound to be 1
4αm. Recall that G ⊆ A2 is a 2-good interval, and that |A2| = 2|G|.

The identified A2 is, therefore, a 4-good interval.
To conclude, if we could indeed find (while preserving privacy) a length J s.t. there exists a 2-good

interval G of that length, then our task would be completed.

Computing the interval length J. At first attempt, one might consider preforming a binary search for
such a length 0 ≤ J ≤ 2d, in which every comparison will be made using the Laplace mechanism. More
specifically, for every length 0 ≤ J ≤ 2d, define

Q(J) = max
[a,b]⊆Xd

b−a=J

{
min

{
number of

zeros in [a, b]
,

number of
ones in [a, b]

}}
.

If, e.g., Q(J) = 100 for some J , then there exists an interval [a, b] ⊆ Xd of length J that contains at least
100 ones and at least 100 zeros. Moreover, every interval of length ≤ J either contains at most 100 ones, or,
contains at most 100 zeros.

Note that Q(·) is a monotonically non-decreasing function, and that Q(0) = 0 (as in a correctly labeled
sample a point cannot appear both with the label 1 and with the label 0). Recall our assumption that the
sample S is “diverse” (contains many points labeled as 1 and many points labeled as 0), and, therefore,
Q(2d) is large. Hence, there exists a J s.t. Q(J) is “big enough” (say at least 1

4αm) while Q(J − 1) is “small
enough” (say at most 3

4αm). That is, a J s.t. (1) there exists an interval of length J containing lots of ones
and lots of zeros; and (2), every interval of length < J cannot contain too many ones and too many zeros
simultaneously. Such a J can easily be (privately) obtained using a (noisy) binary search. However, as there
are d noisy comparisons, this solution requires a sample of size dO(1) in order to achieve reasonable utility
guarantees.

As a second attempt, one might consider preforming a binary search, not on 0 ≤ J ≤ 2d, but rather on
the power j of an interval of length 2j. That is, preforming a search for a power 0 ≤ j ≤ d for which there
exists a 2-good interval of length 2j . Here there are only log(d) noisy comparisons, and the sample size is

reduced to logΩ(1)(d). Again, a (noisy) binary search on 0 ≤ j ≤ d can (privately) yield an appropriate
length J = 2j s.t. Q(2j) is “big enough”, while Q(2j−1) is “small enough”. Such a J = 2j is, indeed, a
length of a 2-good interval. Too see this, note that as Q(2j) is “big enough”, there exists an interval of
length 2j containing lots of ones and lots of zeros. Moreover, as Q(2j−1) is “small enough”, every interval
of length 2j−1 = 1

22
j cannot contain too many ones and too many zeros simultaneously.

Remark 3.5. A binary search as above would have to operate on noisy values of Q(·) (as otherwise differ-
ential privacy cannot be obtained). For this reason, we set the bounds for “big enough” and “small enough”
to overlap. Namely, we search for a value j such that Q(2j) ≥ α

4m and Q(2j−1) ≤ 3α
4 m, where α is our

approximation parameter, and m is the sample size.

To summarize, using a binary search we find a length J = 2j such that there exists a 2-good interval of
length J . Then, using Adist, we find a 4-good interval. Finally, we partition this interval to 4 intervals, and
using the exponential mechanism we choose a starting point or end point of one of these intervals as our the
threshold.

We will apply recursion to reduce the costs of computing J = 2j to 2O(log∗(d)). The tool performing
the recursion would be formalized and analyzed in the next section. This tool will later be used in our
construction of a proper (ǫ, δ)-private learner for THRESHd.

3.3 Privately Approximating Quasi-Concave Promise Problems

We next define the notions that enable our recursive algorithm.

Definition 3.6. A function Q(·) is quasi-concave if Q(ℓ) ≥ min{Q(i), Q(j)} for every i ≤ ℓ ≤ j.
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Definition 3.7 (Quasi-Concave Promise Problem). A Quasi-Concave Promise Problem consists of an or-
dered set of possible solutions [0, T ] = {0, 1, . . . , T }, a database S ∈ Xm, a sensitivity-1 quality function
Q : X∗ × [0, T ]→ R, an approximation parameter α, and another parameter r (called a quality promise).

If Q(S, ·) is quasi-concave and if there exists a solution p ∈ [0, T ] for which Q(S, p) ≥ r then a good
output for the problem is a solution k ∈ [0, T ] satisfying Q(S, k) ≥ (1 − α)r. The outcome is not restricted
otherwise.

Example 3.8. Consider a sample S = (xi, yi)
m
i=1, labeled by some target function cj ∈ THRESHd. The goal

of choosing a hypothesis with small empirical error can be viewed as a quasi-concave promise problem as
follows. Set the range of possible solutions to [0, 2d], the approximation parameter to α and the quality
promise to m. Define Q(S, k) = |{i : ck(xi) = yi}|; i.e., Q(S, k) is the number of points in S correctly
classified by ck ∈ THRESHd. Note that the target concept cj satisfies Q(S, j) = m. Our task is to find a
hypothesis hk ∈ THRESHd s.t. errorS(hk) ≤ α, which is equivalent to finding k ∈ [0, 2d] s.t. Q(S, k) ≥ (1−α)m.

To see that Q(S, ·) is quasi-concave, let u ≤ v ≤ w be s.t. Q(S, u), Q(S,w) ≥ λ. Consider j, the
index of the target concept, and assume w.l.o.g. that j ≤ v (the other case is symmetric). That is,
j ≤ v ≤ w. Note that cv errs only on points in between j and v, and cw errs on all these points. That is,
errorS(cv) ≤ errorS(cw), and, therefore, Q(S, v) ≥ λ. See Figure 4 for an illustration.

u j v w

cj cv cw

Figure 4: An illustration for Example 3.8. Here cj is the target concept and the bold dots correspond to
sample points. Note that cw errs on every point on which cv errs.

Remark 3.9. Note that if the sample S in the above example is not consistent with any c ∈ THRESHd, then
there is no j s.t. Q(S, j) = m, and the quality promise is void. Moreover, in such a case Q(S, ·) might not
be quasi-concave.

We are interested in solving quasi-concave promise problems while preserving differential privacy. As
motivated by Remark 3.9, privacy must be preserved even when Q(S, ·) is not quasi-concave or Q(S, p) < r
for all p ∈ [0, T ]. Our algorithm RecConcave is presented in Figure 5 (see inline comments for some of the
underlying intuition).

We start the analysis of Algorithm RecConcave by bounding the number of recursive calls.

Notation. Given an integer n, let log⌈∗⌉(n) denote the number of times that the function ⌈log(x)⌉ must

be iteratively applied before the result is less or equal to 1, i.e., log⌈∗⌉(n) = 1 + log⌈∗⌉⌈log(n)⌉ if n > 1 and

zero otherwise. Observe that log⌈∗⌉(n) = log∗(n).1

Observation 3.10. On a range [0, T ] there could be at most log⌈∗⌉(T ) = log∗(T ) recursive calls throughout
the execution of RecConcave.

Before proceeding to the privacy analysis, we make the following simple observation.

Observation 3.11. Let {f1, f2, . . . , fN} be a set of sensitivity-1 functions mapping X∗ to R. Then fmax(S) =
maxi{fi(S)} and fmin(S) = mini{fi(S)} are sensitivity-1 functions.

1 Clearly log⌈∗⌉(n) ≥ log∗(n). Let ℓ be the smallest number of the form 22
·
·
·
2

s.t. ℓ ≥ n. We have that log∗(ℓ) = log∗(n), and

that log⌈∗⌉(ℓ) = log∗(ℓ) (as all of the numbers in the iterative process of log⌈∗⌉(ℓ) will be integers). As log⌈∗⌉(·) is monotonically

non-decreasing we get log⌈∗⌉(n) ≤ log⌈∗⌉(ℓ) = log∗(ℓ) = log∗(n).
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Algorithm RecConcave
Inputs: Range [0, T ], quality function Q, quality promise r, parameters α, ǫ, δ, and a database S.
Optional Input: a bound N ≥ 1 on the number of recursive calls (set N =∞ otherwise).

1. If [(T ≤ 32) or (N = 1)], then use the exponential mechanism with the quality function Q and the
parameter ǫ to choose and return an index j ∈ [0, . . . , T ]. Otherwise set N = N − 1.

2. Let T ′ be the smallest power of 2 s.t. T ′ ≥ T , and define Q(S, i) = min{0, Q(S, T )} for T < i ≤ T ′.

3. For 0 ≤ j ≤ log(T ′) let L(S, j) = max
[a,b]⊆[0,T ′]

b−a+1=2j

(
min
i∈[a,b]

(
Q(S, i)

))
. For j = log(T ′) + 1 let L(S, j) =

min{0, L(S, log(T ′)}.
% If L(S, j) = x then (1) there exists an interval I ⊆ [0, T ′] of length 2j s.t. Q(S, i) ≥ x for all i ∈ I; and (2) in

every interval I ⊆ [0, T ′] of length 2j there exists a point i ∈ I s.t. Q(S, i) ≤ x. Note that L(S, j + 1) ≤ L(S, j).

See Figure 6 for an illustration.

4. Define the function q(S, j) = min
(
L(S, j)− (1− α)r, r − L(S, j + 1)

)
where 0 ≤ j ≤ log(T ′).

% If q(S, j) is high for some j, then there exists an interval I = [a, a + 2j − 1] s.t. every i ∈ I has a quality

Q(S, i) >> (1− α)r, and for every interval I′ = [a′, a′ + 2j+1 − 1] there exists i′ ∈ I′ with quality Q(S, i) << r.

See Figure 6.

5. Let R = α
2 r.

% R is the promise parameter for the recursive call. Note that for the maximal j with L(S, j) ≥ (1 − α
2
)r we get

q(S, j) ≥ α
2
r = R.

6. Execute RecConcave recursively on the range {0, . . . , log(T ′)}, the quality function q(·, ·), the promise
R, an approximation parameter 1

4 , and ǫ, δ,N . Denote the returned value by k, and let K = 2k.
% If the call to RecConcave was successful, then k is s.t. q(S, k) ≥ (1 − 1

4
)R = 3α

8
r. That is, L(S, k) ≥ (1 − 5α

8
)r

and L(S, k + 1) ≤ (1 − 3α
8
)r. Note in the top level call the approximation parameter α is arbitrary (given as

input), and that in all of the lower level calls the approximation parameter is fixed at 1
4
.

7. Divide [0, T ′] into the following intervals of length 8K (the last ones might be trimmed):
A1 = [0, 8K − 1], A2 = [8K, 16K − 1], A3 = [16K, 24K − 1], . . .
B1 = [4K, 12K − 1], B2 = [12K, 20K − 1], B3 = [20K, 28K − 1], . . .

% We show that in at least one of those two partitions (say the {Ai}’s), there exists a good interval Ag s.t.

Q(S, i) = r for some i ∈ Ag, and Q(S, i) ≤ (1− 3α
8
)r for all i ∈ {0, . . . , T} \Ag.

8. For every such interval I ∈ {Ai} ∪ {Bi} let u(S, I) = max
i∈I

(
Q(S, i)

)
.

9. Use algorithm Adist with parameters ǫ, δ and the quality function u(·, ·), once to choose an interval
A ∈ {Ai}, and once more to choose an interval B ∈ {Bi}.

% By the properties of Adist, w.h.p. at least one of the returned A and B is good.

10. Use the exponential mechanism with the quality function Q(·, ·) and parameter ǫ to choose and return
an index j ∈ (A ∪B).

% We show that a constant fraction of the solutions in (A ∪ B) have high qualities, and, hence, the exponential

mechanism needs only a constant sample complexity in order to achieve good utility guarantees.

Figure 5: Algorithm RecConcave.
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Q(S, ·)

[0, T ′]
0 1 2 3 ...... ...... T ′

length 2j
L(S, j) = (1− α

2
)r

length 2j+1
L(S, j + 1) = (1− 2α)r

r
(1 − α

2
)r

(1 − 2α)r

Figure 6: A demonstration for the functions L and q from Steps 3,4 of RecConcave. In the above illustration,
every interval of length 2j contains at least one point with quality at most (1 − α

2 )r, and there exists an
interval of length 2j containing only points with quality at least (1− α

2 )r. Hence, L(S, j) = (1− α
2 )r. Similarly,

L(S, j+1) = (1−2α)r. Therefore, for this j we have that q(S, j) = min{L(S, j)−(1−α)r, r−L(S, j+1)} = α
2 r.

The reason for defining q(·, ·) is the following. We were interested in identifying a j with an appropriate
lower bound on L(S, j) and with an appropriate upper bound on L(S, j + 1). That is, in order to decide
whether a given j is a good, we need to check both L(S, j) and L(S, j + 1). After defining q(S, ·), we can
simply look for a j with a high q(S, j). A high q(S, j) implies upper and lower bounds (respectively) on
L(S, j), L(S, j + 1).

We now proceed with the privacy analysis of algorithm RecConcave.

Lemma 3.12. When executed on a sensitivity-1 quality function Q, parameters ǫ, δ, and a bound on the
recursion depth N , algorithm RecConcave preserves (3Nǫ, 3Nδ)-differential privacy.

Proof. Note that since Q is a sensitivity-1 function, all of the quality functions defined throughout the execu-
tion of RecConcave are of sensitivity 1 (see Observation 3.11). In each recursive call algorithm RecConcave
invokes at most three differentially private mechanisms – once with the Exponential Mechanism (on Step 1
or on Step 11), and at most twice with algorithm Adist (on Step 9). As there are at most N recursive calls,
we conclude that throughout the entire execution algorithm RecConcave invokes most 3N mechanisms, each
(ǫ, δ)-differentially private. Hence, using Theorem 2.4, algorithm RecConcave is (3Nǫ, 3Nδ)-differentially
private.

We now turn to proving the correctness of algorithm RecConcave. As the proof is by induction (on the
number of recursive calls), we need to show that each of the recursive calls to RecConcave is made with
appropriate inputs. We first claim that the function q(S, ·) constructed in Step 4 is quasi-concave. Note that
for this claim we do not need to assume that Q(S, ·) is quasi-concave.

Claim 3.13. Let Q : X∗ × [0, T ]→ R be a quality function, and let the functions L(·, ·) and q(·, ·) be as in
steps 3, 4 of algorithm RecConcave. Then, for every S ∈ X∗, it holds that q(S, ·) is quasi-concave.

Proof. Fix S ∈ X∗. First observe that the function

L(S, j) = max
[a,b]⊆[0,T ′]

b−a+1=2j

(
min
i∈[a,b]

(
Q(S, i)

))
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is monotonically non-increasing (as a function of j). To see this, note that if L(S, j) = X , then there exists
an interval of length 2j in which every point has quality at least X . In particular, there exists such an
interval of length 1

22
j , and L(S, j − 1) ≥ X .

Now, let i ≤ ℓ ≤ j be s.t. q(S, i), q(S, j) ≥ x. We get that L(S, ℓ) − (1 − α)r ≥ L(S, j) − (1 − α)r ≥ x,
and that r − L(S, ℓ+ 1) ≥ r − L(S, i+ 1) ≥ x. Therefore, q(S, ℓ) ≥ x, and q(S, ·) is quasi-concave.

Notation. We use log⌈N⌉(·) to denote the outcome of N iterative applications of the function ⌈log(·)⌉,
i.e., log⌈N⌉(n) = ⌈log⌈log⌈· · · ⌈log︸ ︷︷ ︸

N times

(n)⌉ · · · ⌉⌉⌉. Observe that log⌈N⌉(n) ≤ 2 + log log · · · log︸ ︷︷ ︸
N times

(n) for every N ≤

log∗(n).2

Lemma 3.14. Let Q : X∗× [0, T ]→ R be a sensitivity-1 quality function, and let S ∈ X∗ be a database s.t.
Q(S, ·) is quasi-concave. Let α ≤ 1

2 and let β, ǫ, δ, r,N be s.t.

max
i∈[0,T ]

{Q(S, i)} ≥ r ≥ 8N · 4

αǫ

{
log
( 32
βδ

)
+ log⌈N⌉(T )

}
.

When executed on S, [0, T ], r, α, ǫ, δ,N , algorithm RecConcave fails to outputs an index j s.t. Q(S, j) ≥
(1− α)r with probability at most 2βN .

Proof. The proof is by induction on the number of recursive calls, denoted as t. For t = 1 (i.e., T ≤ 32 or
N = 1), the exponential mechanism ensures that for r ≥ 2

αǫ log(
T
β ), the probability of algorithm RecConcave

failing to output a j s.t. Q(S, j) ≥ (1− α)r is at most β.
Assume that the stated lemma holds whenever algorithm RecConcave performs at most t− 1 recursive

calls, and let S, [0, T ], r, α, ǫ, δ,N be inputs (satisfying the conditions of Lemma 3.14) on which algorithm
RecConcave preforms t recursive calls. Consider the first call in the execution of RecConcave on those
inputs, and denote by T ′ the smallest power of 2 s.t. T ′ ≥ T . In order to apply the inductive assumption,
we need to show that for the recursive call in step 6, all the conditions of Lemma 3.14 hold.

We first note that by Claim 3.13, the quality function q(S, ·) defined of step 4 is quasi-concave. We
next show that the recursive call is preformed with an appropriate quality promise R = α

2 r. The conditions
of the lemma ensure that L(S, 0) ≥ r, and, by definition, we have that L(S, log(T ′) + 1) ≤ 0. There
exists therefore a j ∈ [0, log(T ′)] for which L(S, j) ≥ (1 − α

2 )r, and L(S, j + 1) < (1 − α
2 )r. Plugging

these inequalities in the definition of q(S, j) we get that q(S, j) ≥ α
2 r. Therefore, there exists an index

j ∈ [0, log(T ′)] with quality q(S, j) ≥ R. Moreover, the recursive call of step 6 executes RecConcave on
the range [0, log(T ′)] = [0, ⌈log(T )⌉] with (N − 1) as the bound on the recursion depth, with α̃ , 1

4 as the
approximation parameter, and with a quality promise R satisfying

R =
α

2
r

≥ α

2
· 8N · 4

αǫ

{
log
( 32
βδ

)
+ log⌈N⌉(T )

}

= 8N−1 · 4

α̃ǫ

{
log
( 32
βδ

)
+ log⌈N−1⌉⌈log(T )⌉

}

We next show that w.h.p. at least one of the two intervals A,B chosen on Step 9, contains a lot of
points with high score. Denote the index returned by the recursive call of step 6 as k. By the inductive
assumption, with probability at least (1 − 2β(N − 1)), the index k is s.t. q(S, k) ≥ (1 − 1

4 )R = 3α
8 r; we

proceed with the analysis assuming that this event happened. By the definition of q(S, k), this means that
L(S, k) ≥ q(S, k)+ (1−α)r ≥ (1− 5α

8 )r and that L(S, k+1) ≤ r− q(S, k) ≤ (1− 3α
8 )r. That is, there exists

2 For example ⌈log⌈log⌈log(n)⌉⌉⌉ ≤ ⌈log⌈log(2 + log(n))⌉⌉ ≤ ⌈log⌈log(2 log(n))⌉⌉ = ⌈log⌈1 + log log(n)⌉⌉ ≤ ⌈log(2 +
log log(n))⌉ ≤ ⌈log(2 log log(n))⌉ = ⌈1 + log log log(n)⌉ ≤ 2 + log log log(n).
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an interval G of length 2k s.t. ∀i ∈ G it holds that Q(S, i) ≥ (1 − 5α
8 )r, and every interval of length 2 · 2k

contains at least one point i s.t. Q(S, i) ≤ (1− 3α
8 )r.

As promised by the conditions of the lemma, there exists a point p ∈ [0, T ] with quality Q(S, p) ≥ r.
Consider the following two intervals: P1 = [p−2 ·2k+1, p] and P2 = [p, p+2 ·2k−1], and denote P = P1∪P2

(these two intervals might be trimmed if p is close to the edges of [0, T ]). Assuming P1, P2 are not trimmed,
they both are intervals of length 2 · 2k, and, therefore, each of them contains a point i1, i2 respectively with
quality Q(S, i1), Q(S, i2) ≤ (1 − 3α

8 )r. Therefore, by the quasi-concavity of Q(S, ·), every point ℓ ≥ i2 and
every point ℓ ≤ i1 must have quality at most Q(S, ℓ) ≤ (1 − 3α

8 )r (otherwise, by the quasi-concavity of
Q(S, ·), every point between ℓ and p must have quality strictly greater than (1 − 3α

8 )r, contradicting the
quality bound on i1, i2). See Figure 7.

P1 P2

p

Q(S, p) ≥ r

i2

Q(S, i2) ≤ (1− 3α
8
)r

i1 ℓ

Figure 7: A point ℓ /∈ P cannot have quality greater than (1− 3α
8 )r.

Note that if P1 (or P2) is trimmed, then there are no points on the left of (or on the right of) P . So, the
interval P contains the point p with quality Q(S, p) ≥ r and every point i ∈ [0, T ] \P has quality of at most
(1− 3α

8 )r. Moreover, P is of length 4 · 2k − 1. As the intervals of the partitions {Ai} and {Bi} are of length
8 · 2k, and the {Bi}’s are shifted by 4 · 2k, there must exist an interval C ∈ {Ai} ∪ {Bi} s.t. P ⊆ C. Assume
without loss of generality that C ∈ {Ai}.

Recall that the quality u(S, ·) of an interval I is defined as the maximal quality Q(S, i) of a point i ∈ I.
Therefore, as p ∈ C, the quality of C is at least r. On the other hand, the quality of every Ai 6= C is at
most (1− 3α

8 )r. That is, the interval C scores better (under u) than any other interval in {Ai} by at least an
additive factor of 3α

8 r ≥ 1
ǫ log(

1
βδ ). By the properties of Adist, with probability at least (1− β), the chosen

interval A in step 9 is s.t. P ⊆ A. We proceed with the analysis assuming that this is the case.
Consider again the interval P containing the point p, and recall that there exists an interval G of length

2k containing only points with quality Q(S, ·) of at least (1 − 5α
8 )r. Such an interval must be contained in

P . Otherwise, by the quasi-concavity of Q(S, ·), all the points between G and the point p must also have
quality at least (1− 5α

8 )r, and, in particular, P must indeed contain such an interval.
So, the chosen interval A in step 9 is of length 8 · 2k, and it contains a sub interval of length 2k in which

every point has quality at least (1 − 5α
8 )r. That is, at least 1

16 out of the points in (A ∪ B) has quality at
least (1 − 5α

8 )r. Therefore, as r ≥ 4
αǫ log(

16
β ), the exponential mechanism ensures that the probability of

step 10 failing to return a point h ∈ (A ∪B) with Q(S, h) ≥ (1 − α)r is at most β.3

All in all, with probability at least (1− 2β(N − 1)− 2β) = (1− 2βN), algorithm RecConcave returns an
index j ∈ [0, T ] s.t. Q(S, j) ≥ (1− α)r.

Combining Lemma 3.12 and Lemma 3.14 we get the following theorem.

Theorem 3.15. Let algorithm RecConcave be executed on a range [0, T ], a sensitivity-1 quality function
Q, a database S, a bound on the recursion depth N , privacy parameters ǫ

3N , δ
3N , approximation parameter

α, and a quality promise r. The following two statements hold:

1. Algorithm RecConcave preserves (ǫ, δ)-differential privacy.

3 As there are at least 1
16

|A ∪ B| solutions with quality at least (1− 5α
8
)r, the probability that the exponential mechanism

outputs a specific solution h ∈ (A ∪B) with Q(S, h) ≥ (1− α)r is at most
exp( ǫ

2
(1−α)r)

1

16
|A∪B| exp( ǫ

2
(1− 5α

8
)r)

. Hence, the probability that

the exponential mechanism outputs any solution h ∈ (A ∪B) with Q(S, h) ≥ (1− α)r is at most 16
exp( ǫ

2
(1−α)r)

exp( ǫ
2
(1− 5α

8
)r)

, which is at

most β for our choice of r.
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2. If S is s.t. Q(S, ·) is quasi-concave, and if

max
i∈[0,T ]

{Q(S, i)} ≥ r ≥ 8N · 36N
αǫ



log

(6N
βδ

)
+ log log · · · log︸ ︷︷ ︸

N times

(T )



 (2)

then algorithm RecConcave fails to outputs an index j s.t. Q(S, j) ≥ (1−α)r with probability at most
β.

Remark 3.16. Recall that the number of recursive calls on a range [0, T ] is always bounded by log∗(T ), and

note that for N = log∗(T ) we have that log⌈N⌉(T ) ≤ 1. Therefore, the promise requirement in Inequality (2)

can be replaced with 8log
∗(T ) · 36 log∗(T )

αǫ log
(

12 log∗(T )
βδ

)
.

Remark 3.17. The computational efficiency of algorithm RecConcave depends on the quality function
Q(·, ·). Note, however, that it suffices to efficiently implement the top level call (i.e., without the recursion).
This is true because an iteration of algorithm RecConcave, operating on a range [0, T ], can easily be im-
plemented in time poly(T ), and the range given as input to recursive calls is logarithmic in the size of the
initial range.

3.4 A Proper (ǫ, δ)-Private Learner For THRESHd

As we will now see, algorithm RecConcave can be used as a proper (α, β, ǫ, δ,m)-private learner for THRESHd.
Recall Example 3.8 (showing that the goal of choosing a hypothesis with small empirical error can be viewed
as a quasi-concave promise problem), and consider the following algorithm.

Algorithm LearnThresholds
Input: A labeled sample S = (xi, yi)

m
i=1 and parameters α, ǫ, δ,N .

1. Denote α̂ = α
2 , ǫ̂ = ǫ

3N , and δ̂ = δ
3N .

2. For every 0 ≤ j ≤ 2d, define Q(S, j) = |{i : cj(xi) = yi}|.

3. Execute algorithm RecConcave on the sample S, the range [0, 2d], the quality function Q(·, ·),
the promise m, and parameters α̂, ǫ̂, δ̂, N . Denote the returned value as k.

4. Return ck.

Theorem 3.18. For every 1 ≤ N ≤ log∗(2d), Algorithm LearnThresholds is an efficient proper (α, β, ǫ, δ,m)-
PPAC learner for THRESHd, where the sample size is

m = O


 8N ·N
α ·min{α, ǫ}



log

( N

αβδ

)
+ log log · · · log︸ ︷︷ ︸

N times

(2d)






 .

Proof. By Theorem 3.15, algorithm LearnThresholds is (ǫ, δ)-differentially private. For the utility analysis,
fix a target concept cj ∈ THRESHd, and a distribution D on Xd, and let S be a sample drawn i.i.d. from D
and labeled by cj . Define the following two good events:

E1 : ∀ h ∈ THRESHd, |errorD(h, cj)− errorS(h)| ≤ α
2 .

E2 : Algorithm RecConcave returns k s.t. errorS(ck) ≤ α
2

Clearly, when both E1, E2 occur, algorithm LearnThresholds succeeds in outputting an α-good hypoth-
esis for cj and D. Note that as VC(THRESHd) = 1, Theorem 2.14 ensures that for m ≥ 200

α2 ln( 4
αβ ), event E1

happens with probability at least (1− β
2 ).
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Next, note that for the target concept cj it holds that Q(S, j) = m, and algorithm RecConcave is
executed on step 3 with a valid quality promise. Moreover, as shown in Example 3.8, algorithm RecConcave
is executed with a quasi-concave quality function.

So, algorithm RecConcave is executed on step 3 with a valid quality promise and with a quasi-concave
quality function. For

m ≥ 8N · 72N
αǫ



log

(12N
βδ

)
+ log log · · · log︸ ︷︷ ︸

N times

(T )



 ,

algorithm RecConcave ensures that with probability at least (1 − β
2 ), the index k at step 2 is s.t. Q(k) ≥

(1− α
2 )m. The empirical error of ck is at most α

2 in such a case. Therefore, Event E2 happens with probability

at least (1− β
2 ). Overall, we conclude that LearnThresholds is a proper (α, β, ǫ, δ,m)-PPAC learner for C,

where

m ≥ max





200

α2
ln(

4

αβ
) ,

8N72N

αǫ


log

(12N
βδ

)
+ log log · · · log︸ ︷︷ ︸

N times

(2d)





 .

Remark 3.19. By using N = log∗(2d) in the above theorem, we can bound the sample complexity of
LearnThresholds by

m = O

(
8log

∗(d) · log∗(d)
α ·min{α, ǫ} log

( log∗(d)
αβδ

))
.

3.5 Axis-Aligned Rectangles in High Dimension

Consider the class of all axis-aligned rectangles (or hyperrectangles) in the Euclidean space Rn. A concept
in this class could be thought of as the product of n intervals, one on each axis. We briefly describe an
efficient approximate-private proper-learner for a discrete version of this class.

Formally,

Definition 3.20. Let Xn
d = ({0, 1}d)n denote a discrete n-dimensional domain, in which every axis consists

of 2d points {0, 1, . . . , 2d − 1}. For every ~a = (a1, . . . , an),~b = (b1, . . . , bn) ∈ Xn
d define the concept c[~a,~b] :

Xn
d → {0, 1} where c[~a,~b](~x) = 1 if and only if for every 1 ≤ i ≤ n it holds that ai ≤ xi ≤ bi. Define the

concept class of all axis-aligned rectangles over Xn
d as RECTANGLE

n
d = {c[~a,~b]}~a,~b∈Xn

d
.

The VC dimension of this class is 2n, and, thus, it can be learned non-privately with sample complexity
Oα,β(n). Note that | RECTANGLEnd | = 2O(nd), and, therefore, the generic construction of Kasiviswanathan et
al. [22] yields an inefficient proper ǫ-private learner for this class with sample complexity Oα,β,ǫ(nd).

In [23], Kearns gave an efficient (noise resistant) non-private learner for this class. The learning model
there was a variant of the statistical queries model [23], in which the learner is also being given access to the
underling distribution D. Every learning algorithm in the statistical queries model can be transformed to
satisfy differential privacy while preserving efficiency [6, 22]. However, as Kearns’ algorithm assumes direct
access to D, this transformation cannot be applied directly.

Kearns’ algorithm begins by sampling D and using the drawn samples to divide each axis i ∈ [n] into
O(n/α) intervals Ii = {I} with the property that the xi component of a random point from D is approx-
imately equally likely to fall into each of the intervals in Ii. The algorithm proceeds by estimating the
boundary of the target rectangle separately for every dimension i: For every interval I ∈ Ii, the algorithm
uses statistical queries to estimate the probability that a positively labeled input has its xi component in I,
i.e.,

pI = Pr
x∼D

[
(x is labeled 1) ∧ (xi ∈ I)

]
.

The algorithm places the left boundary of the hypothesis rectangle in the i-th dimension at the left-most
interval I ∈ Ii such that pI is significant, and analogously on the right.
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Note that once the interval sets Ii are defined for each axis i ∈ [n], estimating every single pI can be done
via statistical queries, and can, therefore, be made private using the transformation of [6, 22]. Alternatively,
estimating (simultaneously) all of the pI ’s (on the ith axis) could be done privately using the laplacian
mechanism. This use of the laplacian mechanism is known as a histogram (see Theorem 2.24).

Thus, our task is to privately partition each axis. The straight forward approach for privately finding Ii
is by a noisy binary search for the boundary of each of the n/α intervals (in each axis). This would result
in Ω(d) noisy comparisons, which, in turn, results in a private learner with a high sample complexity.

We now overcome this issue using a sanitizer for THRESHd. Such a sanitizer will be constructed in
Section 4.2; here we use it for privately finding Ii.
Theorem 3.21 (Restatement of Theorem 4.13). Fix α, β, ǫ, δ. There exists an efficient (α, β, ǫ, δ,m)-

sanitizer for THRESHd, where m = Õβ,ǫ,δ

(
1

α2.5 · 8log
∗(d)
)
.

As we next explain, such a sanitizer can be used to (privately) divide the axes. Given an interval
[a, b] ⊆ Xd and a sample S, we denote the probability mass of [a, b] under D as D[a, b], and the number of
sample points in this interval as #S [a, b]. Standard arguments in learning theory (specifically, Theorem 2.14)
state that for a large enough sample (whose size is bigger than the VC dimensions of the intervals class)
w.h.p. 1

|S|#S [a, b] ≈ D[a, b] for every interval [a, b] ⊆ Xd.

On an input database S ∈ (Xd)
∗, such a sanitizer for THRESHd outputs an alternative database Ŝ ∈ (Xd)

∗

s.t. 1
|Ŝ|

#Ŝ [0, b] ≈ 1
|S|#S [0, b] for every interval [0, b] ⊆ Xd. Hence, for every interval [a, b] ⊆ Xd we have that

1

|Ŝ|
#Ŝ [a, b] =

1

|Ŝ|
#Ŝ [0, b]−

1

|Ŝ|
#Ŝ [0, a− 1]

≈ 1

|S|#S [0, b]−
1

|S|#S [0, a− 1]

=
1

|S|#S [a, b]

≈ D[a, b].
So, in order to divide the ith axis we apply the above mentioned sanitizer, and divide the axis using the

returned sanitized database. In order to accumulate error of up to α/n on each axis (as required by Kearns’
algorithm), we need to execute the above mentioned sanitizer with an approximation parameter of (roughly)

α/n. Every such execution requires, therefore, a sample of Õα,β,ǫ,δ

(
n2.5 · 8log∗(d)

)
elements. As there are n

such executions (one for each axis), using Theorem 2.5 (composition theorem), the described learner is of

sample complexity Õα,β,ǫ,δ

(
n3 · 8log∗(d)

)
.

Theorem 3.22. There exists an efficient (α, β, ǫ, δ,m)-PPAC proper-learner for RECTANGLE
n
d , where

m = O

(
n3

α2.5ǫ
· 8log∗(d) · log∗(d) · log

( n

αδ

)
· log

(
n · log∗(d)

αβǫδ

))
.

This should be contrasted with θα,β(n), which is the non-private sample complexity for this class (as the
VC-dimension of RECTANGLEnd is 2n), and with θα,β,ǫ(nd) which is the pure-private sample complexity for
this class.4

4 Sanitization with Approximate Privacy

In this section we present (ǫ, δ)-private sanitizers for several concept classes, and separate the database size
necessary for (ǫ, 0)-private sanitizers from the database size sufficient for (ǫ, δ)-private sanitizers.

4The general construction of Kasiviswanathan et al. [22] yields an (inefficient) pure-private proper-learner for this class with
sample complexity Oα,β,ǫ(nd). Feldman and Xiao [17] showed that this is in fact optimal, and every ǫ-private (proper or
improper) learner for this class must have sample complexity Ω(nd).
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4.1 The Choosing Mechanism

Recall that in our private PAC learner for POINTd, given a typical labeled sample, there exists a unique
concept in the class that stands out (we used algorithm Adist to identify it). This is not the case in the
context of sanitization, as a given database S can have many α-close sanitized databases Ŝ. We will overcome
this issue by using the following private tool for approximating a restricted class of choosing problems.

A function q : X∗ × F → N defines an optimization problem over the domain X and solution set F :
Given a dataset S over domain X choose f ∈ F that (approximately) maximizes q(S, f). We are interested
in a subset of these optimization problems, which we call bounded-growth choice problems. In this section
we consider a database S ⊆ X∗ as a multiset.

Definition 4.1. Given q and S define optq(S) = maxf∈F{q(S, f)}. A solution f ∈ F is called α-good for
a database S if q(S, f) ≥ optq(S)− α|S|.
Definition 4.2. A quality function q : X∗ ×F → N is k-bounded-growth if:

1. q(∅, f) = 0 for all f ∈ F .
2. If S2 = S1 ∪ {x}, then (i) q(S1, f) + 1 ≥ q(S2, f) ≥ q(S1, f) for all f ∈ F ; and (ii) there are at most k

solutions f ∈ F s.t. q(S2, f) > q(S1, f).

In words, the second requirement means that (i) Adding an element to the database could either have no
effect on the score of a solution f , or can increase the score by exactly 1; and (ii) There could be at most k
solutions whose scores are increased (by 1). Note that a k-bounded-growth quality function is, in particular,
a sensitivity-1 function as two neighboring S, S′ must be of the form D ∪ {x1} and D ∪ {x2} respectively.
Hence, q(S, f)− q(S′, f) ≤ q(D, f) + 1− q(D, f) = 1 for every solution f .

Example 4.3. As an example of a 1-bounded growth quality function, consider the following q : X∗×X → N.
Given a database S = (x1, . . . , xm) containing elements from some domain X , define q(S, a) =

∣∣{i : xi = a}
∣∣.

That is, q(S, a) is the number of appearances of a in S. Clearly, q(∅, f) = 0 for all f ∈ X . Moreover, adding
an element a ∈ X to a database S increases by 1 the quality of q(S, a), and does not effect the quality of
every other b 6= a.

The choosing mechanism (in Figure 8) is a private algorithm for approximately solving bounded-growth
choice problems. Step 1 of the algorithm checks whether a good solutions exist, as otherwise any solution
is approximately optimal (and the mechanism returns ⊥). Step 2 invokes the exponential mechanism, but
with the small set G(S) instead of F .

Choosing Mechanism
Input: a database S, a quality function q, and parameters α, β, ǫ, δ.

1. Set best(S) = maxf∈F {q(S, f)}+ Lap(4ǫ ). If best(S) <
αm
2 then halt and return ⊥.

2. Let G(S) = {f ∈ F : q(S, f) ≥ 1}. Choose and return f ∈ G(S) using the exponential
mechanism with parameter ǫ

2 .

Figure 8: The choosing mechanism.

Lemma 4.4. When q is a k-bounded-growth quality function, the choosing mechanism preserves (ǫ, δ)-
differential privacy for databases of m ≥ 16

αǫ ln(
16k
αβǫδ ) elements.

Proof. Let S, S′ be neighboring databases of m elements. We need to show that Pr[A(S) ∈ R] ≤ exp(ǫ) ·
Pr[A(S′) ∈ R] + δ for any set of outputs R. Note first that by the properties of the Laplace Mechanism,

Pr[A(S) = ⊥] = Pr
[
best(S) <

αm

2

]

≤ exp(
ǫ

4
) · Pr

[
best(S′) <

αm

2

]

= exp(
ǫ

4
) · Pr[A(S′) = ⊥]. (3)
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Case (a): q(S, f) < αm
4 for all f . Using m ≥ 16

αǫ ln(
1
2δ ), we get that

Pr[A(S) 6= ⊥] ≤ Pr

[
Lap(

4

ǫ
) >

αm

4

]
=

1

2
exp(− ǫ

4

αm

4
) ≤ δ.

Hence, for every set of outputs R

Pr[A(S) ∈ R] ≤ 1(⊥∈R) · Pr[A(S) = ⊥] + Pr[A(S) 6= ⊥]
≤ 1(⊥∈R) · exp(

ǫ

4
) · Pr[A(S′) = ⊥] + δ

≤ exp(
ǫ

4
) · Pr[A(S′) ∈ R] + δ.

Case (b): There exists f̂ s.t. q(S, f̂) ≥ αm
4 . Let G(S) and G(S′) be the sets used in step 2 in the

execution S and on S′ respectively. We will show that the following two facts hold:

Fact 1 : For every f ∈ G(S) \G(S′), it holds that Pr[A(S) = f ] ≤ δ
k .

Fact 2 : For every possible output f /∈ G(S) \G(S′), it holds that Pr[A(S) = f ] ≤ eǫ Pr[A(S′) = f ].

We first show that the two facts imply that the lemma holds for Case (b). Let B , G(S) \ G(S′), and
note that as q is k-growth-bounded, |B| ≤ k. Denote B = {b1, . . . , bℓ}, where ℓ ≤ k. Using the above two
facts, for every set of outputs R we have

Pr[A(S) ∈ R] = Pr[A(S) ∈ R \B] +
∑

i: bi∈R

Pr[A(S) = bi]

≤ eǫ Pr[A(S′) ∈ R \B] +
∑

i: bi∈R

δ

k

≤ eǫ Pr[A(S′) ∈ R] + δ.

For proving Fact 1, let f ∈ G(S) \G(S′). That is, q(S, f) ≥ 1 and q(S′, f) = 0. As q is (in particular) a

sensitivity-1 function, it must be, therefore, that q(S, f) = 1. As there exists f̂ ∈ S with q(S, f̂) ≥ αm
4 , we

have that

Pr[A(S) = f ] ≤ Pr

[
The exponential

mechanism chooses f

]
≤ exp( ǫ4 )

exp( ǫ4
αm
4 )

,

which is at most δ
k for m ≥ 16

αǫ (
ǫ
4 + ln(kδ )).

For proving Fact 2, let f /∈ G(S) \G(S′) be a possible output of A(S). If f /∈ (G(S)∪{⊥}) then trivially
Pr[A(S) = f ] = 0 ≤ eǫ Pr[A(S′) = f ]. We have already established (in Inequality (3)) that for f = ⊥ it holds
that Pr[A(S) = ⊥] ≤ eǫ/4Pr[A(S′) = ⊥]. It remains, hence, to deal with the case where f ∈ G(S) ∩G(S′).
For this case, we use the following Fact 3, proved below.

Fact 3 :
∑

h∈G(S′)

exp( ǫ4q(S
′, h)) ≤ eǫ/2 · ∑

h∈G(S)

exp( ǫ4q(S, h)).

Using Fact 3, for every possible output f ∈ G(S) ∩G(S′) we have that

Pr[A(S) = f ]

Pr[A(S′) = f ]

=

(
Pr[A(S) 6= ⊥] exp( ǫ4q(f, S))∑

h∈G(S) exp(
ǫ
4q(h, S))

)
/

(
Pr[A(S′) 6= ⊥] exp( ǫ4q(f, S

′))∑
h∈G(S′) exp(

ǫ
4q(h, S

′))

)

=
Pr[A(S) 6= ⊥]
Pr[A(S′) 6= ⊥] ·

exp( ǫ4q(f, S)) ·
∑

h∈G(S′) exp(
ǫ
4q(h, S

′))

exp( ǫ4q(f, S
′)) ·∑h∈G(S) exp(

ǫ
4q(h, S))

≤ e
ǫ
4 · e ǫ

4 · e ǫ
2 = eǫ.

22



We now prove Fact 3. Denote X ,
∑

h∈G(S)

exp( ǫ4q(S, h)). We first show that

k · eǫ/4 + eǫ/4 · X ≤ eǫ/2X . (4)

That is, we need to show that X ≥ k
eǫ/4−1

. As 1+ ǫ
4 ≤ eǫ/4, it suffices to show that X ≥ 4k

ǫ . Recall that there

exists a solution f̂ s.t. q(S, f̂) ≥ αm
4 . Therefore, X ≥ exp( ǫ4

αm
4 ), which is at least 4k

ǫ for m ≥ 16
αǫ ln(

4k
ǫ ).

This proves (4).

Now, recall that as q is k-growth-bounded, for every h ∈ F it holds that |q(S, h)−q(S′, h)| ≤ 1. Moreover,
|G(S′) \G(S)| ≤ k, and every h ∈ (G(S′) \G(S)) obeys q(S′, h) = 1. Hence,

∑

h∈G(S′)

exp(
ǫ

4
q(S′, h)) ≤ k · exp( ǫ

4
) +

∑

h∈G(S′)∩G(S)

exp(
ǫ

4
q(S′, h))

≤ k · exp( ǫ
4
) + exp(

ǫ

4
) ·

∑

h∈G(S′)∩G(S)

exp(
ǫ

4
q(S, h))

≤ k · exp( ǫ
4
) + exp(

ǫ

4
) ·

∑

h∈G(S)

exp(
ǫ

4
q(S, h))

= k · eǫ/4 + eǫ/4 · X ≤ eǫ/2X .

This concludes the proof of Fact 3, and completes the proof of the lemma.

The utility analysis for the choosing mechanism is rather straight forward:

Lemma 4.5. When q is a k-bounded-growth quality function, given a database S of m ≥ 16
αǫ ln(

16k
αβǫδ ) ele-

ments, the choosing mechanism outputs an α-good solution for S with probability at least 1− β.

Proof. Note that if q(S, f) < αm for every solution f , then every solution is an α-good solution, and the
mechanism cannot fail. Assume, therefore, that there exists a solution f s.t. q(f, S) ≥ αm, and recall that
the mechanism defines best(S) as maxf∈F {q(f, S)}+ Lap(4ǫ ). Now consider the following two good events:

E1: best(S) ≥ αm
2 .

E2: The exponential mechanism chooses a solution f s.t. q(S, f) ≥ opt(S)− αm.

If E2 occurs then the mechanism outputs an α-good solution. Note that the event E2 is contained inside
the event E1, and, therefore, Pr[E2] = Pr[E1 ∧ E2] = Pr[E1] · Pr[E2|E1]. By the properties of the Laplace
Mechanism, Pr[E1] ≥

(
1− 1

2 exp(− ǫ
4
αm
2 )
)
, which is at least (1− β

2 ) for m ≥ 8
αǫ ln(

1
β ).

By the growth-boundedness of q, and as S is of size m, there are at most km possible solutions f
with q(f, S) > 0. That is, |G(S)| ≤ km. By the properties of the Exponential Mechanism, we have that
Pr[E2|E1] ≥

(
1− km · exp(−αǫm

4 )
)
, which is at least (1 − β

2 ) for m ≥ 8
αǫ ln(

16k
αβǫ). For our choice of m we

have, therefore, that Pr[E2] ≥ (1 − β
2 )(1 −

β
2 ) ≥ (1 − β).

All in all, for m ≥ 16
αǫ ln(

16k
αβǫδ ) we get that with probability at least (1−β) it outputs an α-good solution

for its input database.

4.2 (ǫ, δ)-Private Sanitizer for POINTd

Beimel et al. [3] showed that every pure ǫ-private sanitizer for POINTd, must operate on databases of Ω(d)
elements. In this section we present an (ǫ, δ)-private sanitizer for POINTd with sample complexity Oα,β,ǫ,δ(1).
This separates the database size necessary for (ǫ, 0)-private sanitizers from the database size sufficient for
(ǫ, δ)-private sanitizers.
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Let S = (x1, x2, . . . , xm) ∈ Xm
d be a database of d-bit strings. For every cj ∈ POINTd, the query

Qcj : X∗
d → [0, 1] is defined to be the fraction of the strings in the database that equal j

Qcj(S) =
1

m
|{i : cj(xi) = 1}| = 1

m
|{i : xi = j}|.

Our sanitizing algorithm invokes the Choosing Mechanism to choose points x ∈ Xd. Consider the
following q : X∗

d ×Xd → N. Given a database S ∈ Xm
d and a point x ∈ Xd, define q(S, x) to be the number

of appearances of x in S. By Example 4.3, q defines a 1-bounded-growth choosing problem. Moreover, given
a subset R ⊆ Xd consider the restriction of q to the subset R defined as qR(S, x) = q(S, x) for x ∈ R and
zero otherwise. The function qR is a 1-bounded-growth quality function. Our sanitizer SanPoints appears
in Figure 9.

Algorithm SanPoints
Inputs: a database S = (x1, . . . , xm), and parameters α, β, ǫ, δ.

1. Initialize: ∀x ∈ Xd let Est(x) = 0 and let R = Xd.

2. For i = 1 to 2
α

(a) Choose b ∈ R using the Choosing Mechanism with quality function qR, approximation
parameter α

2 , confidence parameter αβ
4 , and privacy parameters ǫ̃ , ǫ√

32

α ln( 5

δ )
and δ̃ , αδ

5 .

(b) If b 6= ⊥ then let Est(b) := Qcb(S) + Lap(1ǫ̃
1
m ) and let R = R \ {b}.

3. Return Est(·).

Figure 9: Algorithm SanPoints.

Theorem 4.6. Fix α, β, ǫ, δ. For m ≥ O
(

1
α1.5ǫ

√
ln(1δ ) ln(

1
αβǫδ )

)
, algorithm SanPoints is an efficient

(α, β, ǫ, δ,m)-improper-sanitizer for POINTd.

Proof. We start with the utility analysis. Fix a database S = (x1, . . . , xm), and consider the execution of
algorithm SanPoints on S. Denote the element chosen by the Choosing Mechanism on the ith iteration of
step 2 by bi, and denote the set of all such elements as B = {b1, . . . , b2/α} \ {⊥}. Moreover, let Ri denote

the set R as is was at the beginning of the ith iteration. Consider the following two bad events:

E1. ∃b ∈ B s.t. |Qcb(S)− Est(b)| > α.

E2. ∃a /∈ B s.t. Qca(S) > α.

If none of these two events happen, then algorithm SanPoints succeeds in outputting an estimation Est s.t.
∀cj ∈ POINTd

∣∣Qcj(S)− Est(j)
∣∣ ≤ α. We now bound the probability of both events.

Consider an iteration i in which an element bi 6= ⊥ is chosen in step 2a. It holds that Pr[|Qcbi
(S) −

Est(bi)| > α] = Pr[|Lap(1ǫ̃ 1
m )| > α] = exp(−ǫ̃αm). Using the union bound on the number of iterations, we

get that Pr[E1] ≤ 2
α exp(−ǫ̃αm). For m ≥ 6

α1.5ǫ ln(
4
αβ )
√
ln(5δ ) we get that Pr[E1] ≤ β

2 .

We now bound Pr[E2]. By the properties of the Choosing Mechanism (Lemma 4.5), with probability at
least (1− αβ

4 ), an execution of the Choosing Mechanism on step 2a returns an α
2 -good solution bi s.t.

qRi(S, bi) ≥ max
x∈Xd

{qRi(S, x)} −
α

2
m. (5)

Using the union bound on the number of iterations, we get that with probability at least (1− β
2 ), Inequality

(5) holds for every iteration 1 ≤ i ≤ α
2 . We will now see that in such a case, event E2 does not occur. Assume

24



to the contrary that there exists an a /∈ B s.t. Qca(S) > α. Therefore, for every iteration i it holds that
maxx∈Xd

{qRi(S, x)} > αm and thus qRi(S, bi) > α
2m. This means that there exist (at least) 2

α different
points bi ∈ Xd that appear in S more than α

2m times, which contradicts the fact that the size of S is m.

All in all, Pr[E2] ≤ β
2 , and the probability of algorithm SanPoints failing to output an estimation Est

s.t. ∀cj ∈ POINTd

∣∣Qcj(S)− Est(j)
∣∣ ≤ α is at most β.

We now proceed with the simple privacy analysis. Note that algorithm SanPoints accesses its input
database only using the Choosing Mechanism on step 2a and using the laplacian mechanism on step 2b.
Every interaction with the laplacian mechanism preserves (ǫ̃, 0)-differential privacy, and there exactly 2

α

such interactions. For our choice of m, every interaction with the Choosing Mechanism preserves (ǫ̃, δ̃)-
differential privacy, and there are exactly 2

α such interactions. Applying Theorem 2.5 (the composition

theorem) with our choice of ǫ̃, δ̃, we get that algorithm SanPoints preserves (ǫ, δ)-differential privacy.

The above algorithm SanPoints can also be used as a sanitizer for the concept class k-POINTd, defined
as follows. For every A ⊆ Xd s.t. |A| = k, the concept class k-POINTd contains the concept cA : Xd → {0, 1},
defined as cA(x) = 1 if x ∈ A and cA(x) = 0 otherwise.

Let S = (x1, x2, . . . , xm) ∈ Xm
d be a database. For every cI ∈ k-POINTd, the query QcI : X∗

d → [0, 1] is
defined as

QcI (S) =
1

m
|{i : cI(xi) = 1}| = 1

m
|{i : xi ∈ I}|.

Consider the following algorithm.

A Sanitizer for k-POINTd.
Input: parameters α, β, ǫ, δ and a dataset S of m elements.

1. Execute SanPoints on S, α
k , β, ǫ, δ, and denote the returned function as Est(·).

2. For every I ⊆ Xd s.t. |I| = k, define e(I) =
∑

i∈I Est(i).

3. Return e(·).

Figure 10: A Sanitizer for k-POINTd.

Theorem 4.7. Fix k, α, β, ǫ, δ. For m ≥ O
(

k1.5

α1.5ǫ

√
ln(1δ ) ln(

k
αβǫδ )

)
, the above algorithm is an efficient

(α, β, ǫ, δ,m)-improper-sanitizer for k-POINTd.

Proof. The privacy of the above algorithm is immediate. Fix a database S = (x1, x2, . . . , xm) ∈ Xm
d . By

Theorem 4.6, with probability at least (1−β), the estimation Est on step 1 is s.t. ∀j ∈ Xd

∣∣ 1
m

∑m
i=1 1{xi=j}−

Est(j)
∣∣ ≤ α

k . Now fix a set I ⊆ Xd of cardinality k. As QcI (S) = 1
m |{i : xi ∈ I}|, we have that

|QcI (S)−
∑

i∈I Est(i)| ≤ kα
k = α.

4.3 (ǫ, δ)-Private Sanitizer for THRESHd

Recall that THRESHd = {c0, . . . , c2d}, where cj(x) = 1 if and only if x < j. Let S = (x1, . . . , xm) ∈ Xm
d be a

database. For every cj ∈ THRESHd, the query Qcj : X∗
d → [0, 1] is defined as

Qcj(S) =
1

m
|{i : cj(xi) = 1}| = 1

m
|{i : xi < j}|.

As | THRESHd | = 2d + 1, one can use the generic construction of Blum et al. [7], and get an ǫ-private
sanitizer for this class with sample complexity O(d). By [3], this is the best possible when guaranteeing
pure privacy (ignoring the dependency on α, β and ǫ). We next present a recursive sanitizer for THRESHd,

guaranteeing approximated privacy and exhibiting sample complexity Õα,β,ǫ,δ(8
log∗(d)).
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The algorithm maintains its sanitized database Ŝ as a global variable, which is initialized as the empty
set. In addition, for the privacy analysis, we would need a bound on the number of recursive calls. It will
be convenient to maintain another global variable, calls, initialized at the desired bound and decreased in
every recursive call.

Given a database S = (x1, . . . , xm) ∈ Xm
d , and a subset R ⊆ Xd, we denote by #S [R] the number of

examples x ∈ S s.t. x ∈ R. That is, #S [R] = |{i : xi ∈ R}|. At every recursive call, the algorithm, which
is executed on a range [k, ℓ] ⊆ Xd, identifies an interval [a, b] ⊆ [k, ℓ] s.t. #S [a, b] is “not too big”, but “not

too small” either. Then the algorithm estimates #̂[a, b] = #S [a, b] + Lap(1ǫ ), and adds #̂[a, b] copies of the
point b to the constructed sanitized database. Afterwards, the algorithm proceeds recursively on the range
[k, a − 1] and on the range [b + 1, ℓ]. As the number of points in [a,b] is “not too small”, the depth of this
recursion is bounded. Our sanitizer SanThresholds appears in Figure 11. We next prove its properties,
starting with the privacy analysis.

Lemma 4.8. When permitted c recursive calls on a sample S of m ≥ 1024
αǫ ln( 2048

αβǫδ ) elements, algorithm

SanThresholds preserves (ǫ̃, 5cδ)-differential privacy, where ǫ̃ =
√
8c ln( 1

cδ )ǫ+ 8cǫ2.

Proof. Every iteration of algorithm SanThresholds can access its input database at most twice using the
laplacian mechanism (on steps 2,11), at most once using the Choosing Mechanism (on step 9 or on step 10b),
and at most once using algorithm RecConcave (on step 8). By the properties of the laplacian mechanism,
every interaction with it preserves (ǫ, 0)-differential privacy. Note that the quality function with which we
call the Choosing Mechanism is at most 2-growth-bounded. Therefore, as m ≥ 1024

αǫ ln( 2048
αβǫδ ), every such

interaction with the Choosing Mechanism preserves (ǫ, δ)-differential privacy. Last, for our choice of ǫ̂, δ̂,
every interaction with algorithm RecConcave preserves (ǫ, δ)-differential privacy.

That is, throughout its entire execution, algorithm SanThresholds invokes at most 4c mechanisms, each
(ǫ, δ)-differentially private. By Theorem 2.5, algorithm SanThresholds is (ǫ̃, 5cδ)-differential private, where

ǫ̃ =
√
8c ln( 1

cδ )ǫ+ 8cǫ2.

We start the utility analysis of SanThresholds with the following simple claim.

Claim 4.9. The function Q(S, ·), defined on step 6, is quasi-concave.

Proof. First note that the function I(S, ·) defined on step 5 is non-decreasing. Now, let u ≤ v ≤ w be s.t.
Q(S, u), Q(S,w) ≥ x. That is,

I(S, u)− αm
32 ≥ x

3αm
32 − I(S, u− 1) ≥ x

and
I(S,w)− αm

32 ≥ x
3αm
32 − I(S,w − 1) ≥ x

.

Using the fact that I(S, ·) is non-decreasing, we have that I(S, u) ≤ I(S, v) and that I(S, v−1) ≤ I(S,w−1).
Therefore

I(S, v) − αm

32
≥ I(S, u)− αm

32
≥ x,

3αm

32
− I(S, v − 1) ≥ 3αm

32
− I(S,w − 1) ≥ x,

and Q(S, v) ≥ x.

Note that every iteration of algorithm SanThresholds draws at most 2 random samples (on steps 2
and 11) from Lap(1ǫ ). We now proceed with the utility analysis by identifying 3 good events that occur with
high probability (over the coin tosses of the algorithm).

Claim 4.10. Fix α, β, ǫ, δ. Let SanThresholds be executed with calls initialized to c ≥ 77
α , and on a database

S of m ≥ 8log
∗(d) · 60cαǫ log∗(d) log

( 12 log∗(d)
βǫδ

)
elements. With probability at least (1 − 3cβ) the following 3

events happen:
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Input: a range [k, ℓ], parameters α, β, ǫ, δ, and a dataset S of m elements.
Global variables: the sanitized database Ŝ (initially empty) and calls (initialized to 77

α ).

1. If calls = 0 then halt. Otherwise, set calls := calls−1.
2. Compute #̂[k, ℓ] = #S [k, ℓ] + Lap(1ǫ ).

3. If #̂[k, ℓ] < αm
8 then define [a, b] := [k, ℓ], add #̂[a, b] copies of the point b to Ŝ, and halt.

4. Let T be the smallest power of 2 s.t. T ≥ (ℓ− k + 1).

5. For every 0 ≤ j ≤ log(T ), define I(S, j) = max
[x,y]⊆[k,ℓ]

y−x+1≤2j

{
#S [x, y]

}
.

% Every interval [x, y] ⊆ [k, ℓ] of length 2j contains at most I(S, j) points in S, and there exists at least one interval

of length (at most) 2j containing exactly I(S, j) points.

6. For every 0 ≤ j ≤ log(T ), define its quality Q(S, j) as
Q(S, j) = min

{
I(S, j)− αm

32 , 3αm
32 − I(S, j − 1)

}
, where I(S,−1) , 0.

% If Q(S, j) is high (for some j), then there exists an interval [a, b] of length 2j containing significantly more points

than αm
32

, and every interval of length 1
2
2j contains significantly less points than 3αm

32
.

7. Define r = αm
32 .

8. Execute algorithm RecConcave on the range [0, log(T )], the quality function Q(·, ·), the quality

promise r, accuracy parameter 1
4 , and privacy parameters ǫ̂ = ǫ

3 log∗(d) , δ̂ = δ
3 log∗(d) . Denote the

returned value as z, and let Z = 2z.
% Assuming the recursive call was successful, the returned z is s.t. Q(S, z) ≥ (1 − 1

4
)r = 3αm

128
. That is, I(S, z) ≥

7αm
128

and I(S, z − 1) ≤ 9αm
128

.

9. If z = 0 then Choose b ∈ [k, ℓ] using the Choosing Mechanism with parameters α
64 , β, ǫ, δ and the

quality function #S [·]. Denote [a, b] = [b, b].
% That is, the quality of b ∈ [k, ℓ] is the number of appearances of the point b is S, and the choosing mechanism

chooses a frequent point.

10. Otherwise (if z ≥ 1) then
(a) Divide [k, ℓ] into the following intervals of length 2Z (the last ones might be trimmed):

A1 = [k, k + 2Z − 1], A2 = [k + 2Z, k + 4Z − 1], A3 = [k + 4Z, k + 6Z − 1], . . .
B1 = [k + Z, k + 3Z − 1], B2 = [k + 3Z, k + 5Z − 1], B3 = [k + 5Z, k + 7Z − 1], . . .

(b) Choose [a, b] ∈ {Ai} ∪ {Bi} using the Choosing Mechanism with parameters α
64 , β, ǫ, δ and the

quality function #S [·].
% The union of the Ai’s and the Bi’s causes the quality function #S [·] to be 2-growth-bounded.

11. Compute #̂[a, b] = #S [a, b] + Lap(1ǫ ), and add #̂[a, b] copies of the point b to Ŝ.

12. If a > k, then execute SanThresholds recursively on the range [k, a− 1], the parameters α, β, ǫ, δ,
the database S, and the references to Ŝ and to calls.

13. If b < ℓ, then execute SanThresholds recursively on the range [b + 1, ℓ], the parameters α, β, ǫ, δ,
the database S, and the references to Ŝ and to calls.

Figure 11: Sanitizer SanThresholds for THRESHd.
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B1 : In every random draw of Lap(1ǫ ) throughout the execution of SanThresholds it holds that |Lap(1ǫ )| ≤
αm
16c .

B2 : Every interaction with algorithm RecConcave on step 8 succeeds in returning a value z s.t. Q(S, z) ≥
3αm
128 .

B3 : Every iteration that halts after step 13, defines an interval [a, b] s.t. #S [a, b] ≥ 5αm
128 .

Proof. First note that it suffices to lower bound the terms Pr[B1], Pr[B2|B1], and Pr[B3|B1 ∧B2], as by the
chain rule of conditional probability it holds that

Pr[B1 ∧B2 ∧B3] = Pr[B1] · Pr[B2|B1] · Pr[B3|B1 ∧B2].

We now bound each of those terms, starting with Pr[B1]. In every single draw, the probability of
|Lap(1ǫ )| > αm

16c is at most exp(−αǫm
16c ), which is at most β

2 for m ≥ 16c
αǫ ln( 2β ). As c (the initial value of calls)

limits the number of iteration, we get that Pr[B1] ≥ (1 − cβ).

For the analysis of Pr[B2|B1], consider an iteration of algorithm SanThresholds that executesRecConcave

on step 8. In particular, this iteration passed step 3 and #̂[k, ℓ] ≥ αm
8 . As event B1 has occurred, we

have that #S [k, ℓ] ≥ αm
16 . Recall that (by definition) I(S,−1) = 0, and so, there exists a j ∈ [0, log(T )]

s.t. I(S, j) ≥ αm
16 , and I(S, j − 1) < αm

16 . Plugging those inequalities in the definition of Q(·, ·), for
this j we have that Q(S, j) ≥ αm

32 = r, and the quality promise used to execute algorithm RecConcave
is valid. Moreover, the function Q(S, ·) defined on step 6 is quasi-concave (by Claim 4.9). And so, for

m ≥ 8log
∗(d) · 4608αǫ log∗(d) log

( 12 log∗(d)
βδ

)
, algorithm RecConcave ensures that with probability at least (1−β),

the returned z is s.t. Q(S, z) ≥ (1− 1
4 )r = 3αm

128 . As there are at most c iterations, Pr[B2|B1] ≥ (1− cβ).

For the analysis of Pr[B3|B1 ∧ B2], consider an iteration of algorithm SanThresholds that halts after
step 13, and let z be the value returned by algorithm RecConcave on step 8. As event B2 has occurred,
Q(S, z) ≥ 3αm

128 . In particular, I(S, z) ≥ 7αm
128 , and there exists an interval G ⊆ [k, ℓ] of length (at most) 2z

containing at least 7αm
128 points in S. Assume z > 0, and consider the intervals in {Ai} and {Bi} defined on

Step 10a. As those intervals are of length 2 ·2z, and the {Bi}’s are shifted by 2z, there must exist an interval
C ∈ {Ai} ∪ {Bi} s.t. G ⊆ C. The quality of C is at least #S [C] ≥ 7αm

128 . Moreover, this quality function
#[·] over {Ai} ∪ {Bi} is 2-bounded. Therefore, as m ≥ 1024

αǫ ln( 2048
αβǫδ ), with probability at least (1 − β), the

Choosing Mechanism returns an interval [a, b] s.t. #S [a, b] ≥ 7αm
128 − αm

64 = 5αm
128 . This also holds when z = 0

(on Step 9).
So, given that event (B1 ∧B2) has occurred, in every iteration that halts after step 13, the probability of

defining [a, b] s.t. #S [a, b] <
5αm
128 is at most β. As there are at most c iterations, we see that Pr[B3|B1∧B2] ≥

(1− cβ).
All in all, for cβ ≤ 3 we get that

Pr[B1 ∧B2 ∧B3] ≥ (1 − cβ)(1 − cβ)(1− cβ) ≥ 1− 3cβ.

Every iteration of algorithm SanThresholds that does not halt on step 1 defines an interval [a, b] (on
exactly one of the steps 3,9,10b). This interval [a, b] is not part of any range that is given as input to any future
recursive call. Moreover, if none of the recursive calls throughout the execution of SanThresholds halts on
step 1, these [a, b] intervals form a partition of the initial range. We now proceed with the utility analysis
by identifying yet another 3 good events (at a somewhat higher level) that occur whenever (B1 ∧B2 ∧B3)
occur.

Claim 4.11. Fix α, β, ǫ, δ. Let SanThresholds be executed with calls initialized to c ≥ 77
α , and on a database

S of m ≥ 8log
∗(d) · 60cαǫ log∗(d) log

( 12 log∗(d)
βǫδ

)
elements. With probability at least (1 − 3cβ) the following 3

events happen:
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E1 : There are at most 77
α recursive calls, none of them halts on the first step.

E2 : Every iteration defines [a, b] s.t. #S [a, b − 1] ≤ αm
2 . That is, every iteration defines [a, b] s.t. the

interval [a, b− 1] contains at most αm
2 points in S.

E3 : In every iteration
∣∣∣#S [a, b]− #̂[a, b]

∣∣∣ ≤ αm
4

α
77 .

Proof. Consider again events B1, B2, B3 defined in Claim 4.10. We will show that the event (E1∧E2∧E3) is
implied by (B1 ∧B2 ∧B3) (which happens with probability at least (1− 3cβ) by Claim 4.10). We, therefore,
continue the proof assuming that (B1 ∧B2 ∧B3) has occurred.

We begin by showing that event E1 occurs. Denote the number of iterations that halts on steps 1-3 as
y1, and the number of complete iterations (i.e., that halts after step 13) as y2. Clearly, y1 ≤ 2y2. Now,
as event B3 has occurred, we have that every iteration that halts after step 13 defines an interval [a, b] s.t.
#S [a, b] ≥ 5αm

128 . This interval does not intersect any range given as input to future calls, and, therefore,
y2 ≤ 128

5α . The total number of iterations is, therefore, bounded by 3y2 ≤ 384
5α < 77

α . Thus, whenever calls
is initialized to at least 77/α, there are at most 77

α iterations, none of them halts on step 1. That is, E1 occurs.

We next show that E3 occurs. As we have seen, event B3 ensures that no iteration halts on step 1.
Therefore every iteration defines #̂[a, b] by adding a random draw of Lap(1ǫ ) to #S [a, b]. As event B1 has

occurred, it holds that
∣∣∣#S [a, b]− #̂[a, b]

∣∣∣ ≤ αm
16c ≤ αm

4
α
77 . So, E3 occurs.

It remains to show that E2 occurs. As B3 has occurred, no iteration of algorithm SanThresholds halts on
step 1. In particular, every iteration defines [a, b] on exactly one of the steps 3,9,10b. Consider an iteration

of algorithm SanThresholds that defines [a, b] on step 3. In that iteration, #̂[k, ℓ] < αm
8 . As event B1 has

occur, it holds that #S [k, ℓ] ≤ αm
2 . Therefore the interval [a, b− 1] = [k, ℓ− 1] contains at most αm

2 points.
Consider an iteration of algorithm SanThresholds that defines [a, b] on step 9. In that iteration, [a, b] is

defined as [a, a]. Trivially, the empty interval [a, b− 1] = [a, a− 1] contains at most αm
2 points.

Consider an iteration of algorithm SanThresholds that defines [a, b] on step 10b (of length at most 2 ·2z).
As event B2 has occurred, z is s.t. Q(S, z) ≥ 3αm

128 . In particular L(S, z − 1) ≤ 9αm
128 , and every interval of

length 1
22

z contains at most 9αm
128 points in S. Therefore #S [a, b− 1] ≤ 4 9αm

128 ≤ αm
2 . Note that we needed z

to be at least 1 (ensured by the If condition on step 10), as otherwise the constraint on intervals of length
1
22

z has no meaning.
At any case, we have that E2 must occur.

All in all,
Pr[E1 ∧ E2 ∧E3] ≥ Pr[B1 ∧B2 ∧B3] ≥ (1− 3cβ).

We will now complete the utility analysis by showing that the input database S and the sanitized database
Ŝ (at the end of SanThresholds’ execution) are α-close whenever (E1 ∧ E2 ∧ E3) occurs.

Lemma 4.12. Fix α, β, ǫ, δ. Let SanThresholds be executed on the range Xd, a global variable calls initialize

to c ≥ 77
α , and on a database S of m ≥ 8log

∗(d) · 60cαǫ log∗(d) log
( 12 log∗(d)

βǫδ

)
elements. With probability at least

(1 − 3cβ), the sanitized database Ŝ at the end of the execution is s.t. |Qcj (S) − Qcj (Ŝ)| ≤ α for every
cj ∈ THRESHd.

Proof. Denote S = (x1, . . . , xm), and Ŝ = (x̂1, . . . , x̂n). Note that |S| = m and that |Ŝ| = n. By Claim 4.11,
the event E1 ∩ E2 ∩ E3 occurs with probability at least (1 − 3cβ). We will show that in such a case, the
sanitized database Ŝ is s.t. |Qcj(S)−Qcj(Ŝ)| ≤ α for every cj ∈ THRESHd.

As event E1 has occurred, the intervals [a, b] defined throughout the execution of SanThresholds defines
a partition of the domain Xd. Denote those intervals as [a1, b1], [a2, b2], . . . , [aw, bw], where a1 = 0, bw =
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2d − 1, and ai+1 = bi + 1. Now fix some cj ∈ THRESHd, and let t be s.t. j ∈ [at, bt]. We have that

Qcj (S) =
1

m
#S [0, j − 1] =

1

m

(
#S [at, j − 1] +

t−1∑

i=1

#S [ai, bi]

)
.

As event E2 ∩ E3 has occurred,

Qcj(S) ≤
1

m

(
αm

2
+

t−1∑

i=1

[
#̂[ai, bi] +

αm

4

α

77

])
.

As event E1 has occurred, t ≤ 77
α , and

Qcj (S) ≤
α

2
+

α

4
+

1

m

t−1∑

i=1

#̂[ai, bi] =
3α

4
+

1

m
#Ŝ [0, j − 1].

Similar arguments show that Qcj (S) ≥ − 3α
4 + 1

m#Ŝ [0, j − 1], and so
∣∣Qcj (S)− 1

m#Ŝ [0, j − 1]
∣∣ ≤ 3α

4 .

Recall that the sanitized database Ŝ is of size n, and that Qcj(Ŝ) =
1
n#Ŝ [0, j − 1]. As event (E1 ∩ E3)

has occurred, we have that n ≤ m+ αm
4 = (1 + α

4 )m. Therefore,

#Ŝ [0, j − 1]

m
− #Ŝ [0, j − 1]

n
=

(
1

m
− 1

n

)
#Ŝ [0, j − 1] ≤ α

4n
#Ŝ [0, j − 1] ≤ α

4
.

Similar arguments show that
∣∣ 1
m#Ŝ [0, j − 1]− 1

n#Ŝ [0, j − 1]
∣∣ ≤ α

4 . By the triangle inequality we have

therefore that
∣∣∣Qcj (S)−Qcj (Ŝ)

∣∣∣ ≤ 3α
4 + α

4 = α.

The following theorem is an immediate consequence of Lemma 4.12 and Lemma 4.8.

Theorem 4.13. Fix α, β, ǫ, δ. There exists an efficient (α, β, ǫ, δ,m)-sanitizer for THRESHd, where

m = O

(
8log

∗(d) · log
∗(d)

α2.5ǫ
log
( log∗(d)

αβǫδ

)√
log
( 1

αδ

))
.

4.4 Sanitization with Pure Privacy

Here we give a general lower bound on the database size of pure private sanitizers. Beimel et al. [3] showed
that every pure ǫ-private sanitizer for POINTd must operate on databases of Ω(d) elements. With slight
modifications, their proof technique can yield a much more general result.

Definition 4.14. Given a concept class C over a domain X, we denote the effective size of X w.r.t. C as

XC = max
{
|X̃| : X̃ ⊆ X s.t. ∀x1 6= x2 ∈ X̃ ∃f ∈ C s.t. f(x1) 6= f(x2)

}
.

That is, XC is the cardinality of the biggest subset X̃ ⊆ X s.t. every two different elements of X̃ are
labeled differently by at least one concept in C.

Lemma 4.15. Let C be a concept class over a domain X. For every (α, β, ǫ,m)-sanitizer for C (proper or
improper) it holds that m = Ω

(
1
ǫα (logXC + log(1/β))

)
.

Proof. Let X̃ ⊆ X be s.t. |X̃| = XC and every two different elements of X̃ are labeled differently by at

least one concept in C. Fix some x1 ∈ X̃ , and for every xi ∈ X̃ , construct a database Si ∈ X̃m by setting
(1 − 3α)m entries as x1 and the remaining 3αm entries as xi (for i = 1 all entries of S1 are x1). Note that
for all i 6= j, databases Si and Sj differ on 3αm entries.
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Let Si be the set of all databases that are α-close to Si. That is,

Si =
{
Ŝ ∈ X∗ : ∀c ∈ C it holds that |Qc(Ŝ)−Qc(Si)| ≤ α

}
.

For every i 6= j we have that Ŝi ∩ Ŝj = ∅. To see this, let f ∈ C be s.t. f(xi) 6= f(xj) (such a concept

exists, by the definition of X̃). For this f it holds that |Qf(Si)−Qf (Sj)| = 3α. Therefore (by the triangle

inequality), there cannot exist a database Ŝ for which |Qf (Si)−Qf (Ŝ)| ≤ α and |Qf(Sj)−Qf (Ŝ)| ≤ α.
Let A be an (α, β, ǫ,m)-sanitizer for C. Without loss of generality, we can assume that A is a proper

sanitizer (otherwise, we could transform it into a proper one by replacing α with 2α). See Remark 2.18.
For all i, on input Si the mechanism A should pick an output from Si with probability at least 1 − β.

Hence,

β ≥ Pr[A(S1) 6∈ S1]

≥ Pr


A(S1) ∈

⋃

i6=1

Si




=
∑

i6=1

Pr[A(S1) ∈ Si] (the sets Si are disjoint)

≥
∑

i6=1

exp(−3ǫαm) Pr[A(Si) ∈ Si] (by the differential privacy of A)

≥ (XC − 1) exp(−3ǫαm) · (1− β).

Solving for m, we get that m = Ω( 1
ǫα (logXC + log(1/β))).

Lemma 4.15, together with a lower bound from [7], yields the following result:

Theorem 4.16. Let C be a concept class over a domain X. If A is an (18 ,
1
8 ,

1
2 ,m)-sanitizer for C, then

m = Ω(log(XC) + VC(C)).

Proof. Immediate from Lemma 4.15 and Theorem 2.20.

The above lower bound is the best possible general lower bound in terms of XC and VC(C) (up to a
factor of logVC(C)). To see this, let n < d, and consider a concept class over Xd containing the following
two kinds of concepts. The first kind are 2n concepts shattering the left n points of Xd (and zero everywhere
else). The second kind are (2d − n) “point concepts” over the right (2d − n) points of Xd (and zero on the
first n). Formally, for every j = (j0, j1, . . . , jn−1) ∈ {0, 1}n, let cj : Xd → {0, 1} be defines as cj(x) = jx
if x < n and cj(x) = 0 otherwise. Define the concept class CL = {cj}j∈Xn . For every n ≤ j < 2d, define
fj : Xd → {0, 1} as fj(x) = 1 if x = j and fj(x) = 0 otherwise. Define the concept class CR = {fj}n≤j<2d .
Now define C = CL

⋃
CR.

We can now construct a sanitizer for C by applying the generic construction of [7] separately for CL and

for CR. Given a database S, this will result in two sanitized databases ŜL, ŜR, with which we can answer all
queries in the class C – a query for c ∈ CL is answered using ŜL, and a query for f ∈ CR is answered using
ŜR. The described (improper) sanitizer for C is of sample complexity Oα,β,ǫ(log(XC) + VC(C) log VC(C)).

5 Sanitization and Proper Private PAC

Similar techniques are used for both data sanitization and private learning, suggesting relationships between
the two tasks. We now explore one such relationship in proving a lower bound on the sample complexity
needed for sanitization (under pure differential privacy). In particular, we show a reduction from the task of
private learning to the task of data sanitization, and then use a lower bound on private learners to derive a
lower bound on data sanitization. A similar reduction was given by Gupta et al. [18], where it is stated in
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terms of statistical queries. They showed that the existence of a sanitizer that accesses the database using
at most k statistical queries, implies the existence of a learner that makes at most 2k statistical queries. We
complement their proof and add the necessary details in order to show that the existence of an arbitrary
sanitizer (that is not restricted to access its data via statistical queries) implies the existence of a private
learner.

Notation. We will refer to an element of Xd+1 as ~x ◦ y, where ~x ∈ Xd, and y ∈ {0, 1}.

5.1 Sanitization Implies Proper PPAC

We show that sanitization of a class C implies private learning of C. Consider an input labeled sample
S = (xi, yi)

m
i=1 ∈ (X × {0, 1})m, labeled by some concept c ∈ C. The key observation is that in order

to privately output a good hypothesis it is suffices to first produce a sanitization Ŝ of S (w.r.t. a slightly
different concept class C label, to be defined) and then to output a hypothesis h ∈ C that minimizes the
empirical error over the sanitized database Ŝ. To complete the proof we then show that sanitization for C
implies sanitization for C label.

In order for the chosen hypothesis h to have small generalization error (rather then just small empirical

error), our input database S must contain at least VC(C)
α2 log( 1

αβ ) elements. We therefore start with the

following simple (technical) lemma, handling a case where our initial sanitizer operates only on smaller
databases.

Lemma 5.1. If there exists an (α, β, ǫ,m)-sanitizer for a class C, then for every q ∈ N s.t. q ≥ 18
β ln(1/β)

there exists a ((2α+ 2β), β, ǫ, qm)-sanitizer for C.

Proof. Fix q ∈ N and let A be an (α, β, ǫ,m)-sanitizer for a class C over a domain X . Note that by
Theorem 2.21, there exists a (2α, 3

2β, ǫ,m)-sanitizer A′ s.t. the sanitized databases returned by A′ are

always of fixed sized n = O(VC(C)
α2 log( 1

αβ )). We now construct a ((2α+2β), β, ǫ, qm)-sanitizer B as follows.

Inputs: a database S = (z1, z2, . . . , zqm) ∈ (X)qm

1. Partition S into S1 = (zi)
m
i=1, S2 = (zi)

2m
i=m+1, . . . , Sq = (zi)

qm
i=qm−m+1.

2. For every 1 ≤ i ≤ q, Ŝi ← A′(Si).

3. Output Ŝ = 〈Ŝ1, Ŝ2, ..., Ŝq〉.

As A′ is ǫ-differentially private, so is B. Denote Ŝ = (ẑ1, ẑ1, . . . , ẑqn) ∈ (X)qn. Recall that q ≥ 18
β ln(1/β),

and, hence, using the Chernoff bound, with probability at least (1−β) it holds that at least (1− 2β)q of the
Ŝi’s are 2α-good for their matching Si’s. In such a case Ŝ is (2α+ 2β)-good for S: for every f ∈ C it holds
that

Qf (S) =
1

qm

∣∣∣∣
{
i :

1 ≤ i ≤ qm
f(zi) = 1

}∣∣∣∣

=
1

qm

∣∣∣∣
{
i :

1 ≤ i ≤ m
f(zi) = 1

}∣∣∣∣+ · · ·+
1

qm

∣∣∣∣
{
i :

qm−m+ 1 ≤ i ≤ qm
f(zi) = 1

}∣∣∣∣

=
1

q
[Qf (S1) + · · ·+Qf (Sq)] .

As at least (1− 2β)q of the Ŝi’s are 2α-good for their matching Si’s, and as trivially Qf (Si) ≤ 1 for each

database Ŝi that is not 2α-good,
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Qf (S) ≤ 1

q

[
Qf (Ŝ1) + . . .+Qf (Ŝq) + (1− 2β)q2α+ 2βq

]

≤ 1

q

[
Qf (Ŝ1) + . . .+Qf (Ŝt/m)

]
+ (2α+ 2β)

=
1

q

[
1

n

∣∣∣∣
{
i :

1 ≤ i ≤ n
f(ẑi) = 1

}∣∣∣∣+ . . .+
1

n

∣∣∣∣
{
i :

qn− n+ 1 ≤ i ≤ qn
f(ẑi) = 1

}∣∣∣∣
]
+ (2α+ 2β)

=
1

qn

∣∣∣∣
{
i :

1 ≤ i ≤ qn
f(ẑi) = 1

}∣∣∣∣+ (2α+ 2β)

= Qf(Ŝ) + (2α+ 2β).

Similar arguments show that Qf (S) ≥ Qf (Ŝ)− (2α+2β). Algorithm B is, therefore, a ((2α+2β), β, ǫ, qm)-
sanitizer for C, as required.

As mentioned above, our first step in showing that sanitization for a class C implies private learning for
C is to show that privately learning C is implied by sanitization for the slightly modified class C label, defined
as follows. For a given predicate c over Xd, we define the predicate clabel over Xd+1 as

clabel(~x ◦ y) =
{
1, c(~x) 6= y.

0, c(~x) = y.

Note that clabel(~x ◦ σ) = σ ⊕ c(~x) for σ ∈ {0, 1}. For a given class of predicates C over Xd, we define
C label = {clabel : c ∈ C}.

Claim 5.2. VC(C) ≤ VC(C label) ≤ 2 ·VC(C).

Proof. For the first inequality notice that if a set S ⊆ Xd is shuttered by C then the set S ◦ 0 is shuttered
by C label. For the second inequality, assume S ⊆ Xd+1 is shattered by C label. Consider the partition of S

to S0 and S1, where Sσ = {~x ◦ y ∈ S : y = σ}. For at least one σ ∈ {0, 1}, it holds that |Sσ| ≥ |S|
2 . Hence,

the set Ŝ = {~x : ~x · σ ∈ Sσ} is shattered by C and VC(C label) ≤ 2 · |Ŝ| ≤ 2 ·VC(C).

The next lemma shows that for every concept class C, a sanitizer for C label implies a private learner for
C. In the next lemma, this connection is made under the assumption that the given sanitizer operates on
large enough databases. This assumption will be removed in the lemma that follows.

Lemma 5.3. Let C be a class of predicates over Xd. If there exists an (α, β, ǫ,m)-sanitizer A for C label,

where m ≥ 50VC(C)
γ2 ln( 1

γβ ) for some γ > 0, then there exists a proper ((2α + γ), 2β, ǫ,m)-PPAC learner for
C.

Proof. Let A be an (α, β, ǫ,m)-sanitizer, and consider the following algorithm Learn:

Inputs: a database S = (xi, yi)
m
i=1

1. Ŝ ← A(S).
2. Output c ∈ C minimizing errorŜ(c).

As A is ǫ-differentially private, so is Learn. For the utility analysis, fix some target concept ct ∈ C and a
distribution D over Xd, and define the following two good events:

E1 : ∀h ∈ C,
∣∣errorS(h)− errorŜ(h)

∣∣ ≤ α.

E2 : ∀h ∈ C, |errorD(h, ct)− errorS(h)| ≤ γ.
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We first show that if these 2 good events happen, algorithm Learn returns a (2α+ γ)-good hypothesis.
As the target concept satisfies errorS(ct) = 0, event E1 ensures the existence of a concept f ∈ C s.t.
errorŜ(f) ≤ α. Thus, algorithm Learn chooses a hypothesis h ∈ C s.t. errorŜ(h) ≤ α. Using event E1

again, this h obeys errorS(h) ≤ 2α. Therefore, event E2 ensures that h satisfies errorD(h, ct) ≤ 2α+ γ.
We will now show that these 2 events happen with high probability. By the definition of C label, for every

clabel ∈ C label we have that

Qclabel(S) =
1

|S|
∣∣{i : clabel(xi ◦ yi) = 1

}∣∣ = 1

|S| |{i : c(xi) 6= yi}| = errorS(c).

Therefore, as A is an (α, β, ǫ,m)-sanitizer for C label, event E1 happens with probability at least (1− β). As

m ≥ 50VC(C)
γ2 ln( 1

γβ ), Theorem 2.14 ensures that event E2 happens with probability at least (1− β) as well.

All in all, Learn is a proper ((2α+ γ), 2β, ǫ,m)-PPAC learner for C.

The above lemma describes a reduction from the task of privately learning a concept class C to the
sanitization task of the slightly different concept class C label. We next show that given a sanitizer for a class
C, it is possible to construct a sanitizer for C label. Along the way we will also slightly increase the sample
complexity of the starting sanitizer, in order to be able to use Lemma 5.3. This results in a reduction from
the task of privately learning a concept class C to the sanitization task of the same concept class C.

Lemma 5.4. If there exists an (α, β, ǫ,m)-sanitizer for a class C, then there exists a ((5α+ 4β), 5β, 6ǫ, t)-
sanitizer for C label, where

100m

α2
ln(

1

αβ
) ≤ t ≤ 150

α2β
ln(

2

αβ
)

(
m+

1

ǫ

)
.

Proof. Let A′ be an (α, β, ǫ,m)-sanitizer for a class C. By replacing α with 2α, and β with 2β, we can

assume that the sanitized databases returned by A′ are always of fixed size n = O(VC(C)
α2 log( 1

αβ )) (see

Theorem 2.21). Moreover, we can assume that A′ treats its input database as a multiset (as otherwise

we could alter A to first randomly shuffle its input database). Denote M = m
⌈
18
β ln( 2

αβ ) ·
(
1 + 1

mǫ

)⌉
. By

Lemma 5.1 for every qM (where q ∈ N) there exists a ((4α+4β), 2β, ǫ, qM) sanitizer A for C (as qM = q′m
for an integer q′). Denote t =

⌈
6
α2

⌉
M , and consider algorithm B presented in Figure 12

Note that the output on Step 8 is just a post-processing of the 4 outputs on Step 7. We first show that
each of those 4 outputs preserves differential privacy, and, hence, B is private (with slightly bigger privacy
parameter, see Theorem 2.3).

By the properties of the laplacian mechanism, m̂0 and m̂1 each preserves ǫ-differential privacy. The
analysis for S̃0 and S̃1 is symmetric, and we next give the analysis for S̃0. Denote by B0 an algorithm
identical to the first 7 steps of B, except that the only output of B0 on Step 7 is S̃0. We now show that B0

is private.

Notations. We use S0[D] and Ŝ0[D] to denote the databases S0, Ŝ0 defined on Steps 1 and 5 in the exe-
cution of B0 on D. Moreover, we use m0[D] to denote the value of |S0|+ ℓ0 in the execution on D, and for
every value m0[D] = L, we use Ŝ0[D,L] to denote the database Ŝ0 defined on Step 5, given that m0[D] = L.

Fix two neighboring databases D,D′, and let F be a set of possible outputs. Note that as D,D′ are
neighboring, it holds that S0[D] and S0[D

′] are identical up to an addition or a change of one entry. Therefore,
wheneverm0[D] = m0[D

′] = L, we have that S0[D,L] and S0[D
′, L] are neighboring databases. Moreover, by

the properties of the laplacian mechanism, for every value L it holds that Pr[m0[D] = L] ≤ eǫ Pr[m0[D
′] = L].

Hence,
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Input: database D = (xi, yi)
t
i=1 ∈ (Xd+1)

t.

1. Divide (xi)
t
i=1 into S0, S1 ∈ (Xd)

∗, where Sσ contains all xi s.t. yi = σ.

2. Sample ℓ0, ℓ1 ← ⌊Lap(1/ǫ)⌋; that is, ℓ0 and ℓ1 are two independent rounded instantiations of a
laplacian random variable.

3. Set m0 = max{0 , |S0|+ ℓ0} and m1 = max{0 , |S1|+ ℓ1}.

4. Set m̂0 =
⌊
m0

M + 1
2

⌋
M , and m̂1 =

⌊
m1

M + 1
2

⌋
M .

5. For σ ∈ {0, 1}, either add copies of the entry 0d to Sσ, or remove the last entries from Sσ until
|Sσ| = m̂σ. Denote the resulting multiset as Ŝσ.

6. Compute S̃0 ← A(Ŝ0) and S̃1 ← A(Ŝ1), where if Ŝσ = ∅, then set S̃σ = ∅.

7. Output m̂0, m̂1, S̃0, S̃1.

8. Construct and output a database D̃ ∈ (Xd+1)
∗ containing m̂0 copies of S̃0 ◦ 0, and m̂1 copies

of S̃1 ◦ 1.

Figure 12: Algorithm B

Pr[B0(D) ∈ F ] =

∞∑

L=−∞

Pr[m0[D] = L] · Pr[B0(D) ∈ F |m0[D] = L]

=

∞∑

L=−∞

Pr[m0[D] = L] · Pr[A(Ŝ0[D,L]) ∈ F ]

≤
∞∑

L=−∞

eǫ · Pr[m0[D
′] = L] · eǫ · Pr[A(Ŝ0[D

′, L]) ∈ F ]

= e2ǫ ·
∞∑

L=−∞

Pr[m0[D
′] = L] · Pr[B0(D

′) ∈ F |m0[D
′] = L]

= e2ǫ · Pr[B0(D
′) ∈ F ].

Overall (since we use two ǫ-private algorithms and two (2ǫ)-private algorithms), algorithm B is (6ǫ)-
differentially private. As for the utility analysis, fix a database D = (xi, yi)

t
i=1 and consider the execution

of B on D. We now show that w.h.p. the sanitized database D̃ is (5α+ 4β)-close to D.
First note that by the properties of the laplacian mechanism, for M ≥ 2

ǫ ln(2/β) we have that with

probability at least (1 − β) it holds that |ℓ0|, |ℓ1| ≤ M
2 . We proceed with the analysis assuming that this is

the case. Moreover, note that after the rounding (on Step 4) we have that |mσ − m̂σ| ≤ M
2 . Therefore, for

every σ ∈ {0, 1}
|Sσ| −M ≤ |Ŝσ| ≤ |Sσ|+M.
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Fix a concept clabel ∈ C label. It holds that

Qclabel(D) =
1

t
|{i : clabel(xi, yi) = 1}|

=
1

t

[ ∣∣∣∣
{
i :

yi = 0
clabel(xi, yi) = 1

}∣∣∣∣+
∣∣∣∣
{
i :

yi = 1
clabel(xi, yi) = 1

}∣∣∣∣
]

=
1

t

[ ∣∣∣∣
{
i :

yi = 0
c(xi) = 1

}∣∣∣∣+
∣∣∣∣
{
i :

yi = 1
c(xi) = 0

}∣∣∣∣
]

≤ 1

t

[ ∣∣∣∣
{
i :

xi ∈ Ŝ0

c(xi) = 1

}∣∣∣∣+M +

∣∣∣∣
{
i :

xi ∈ Ŝ1

c(xi) = 0

}∣∣∣∣+M

]

=
1

t

[
m̂0 ·Qc(Ŝ0) + m̂1

(
1−Qc(Ŝ1)

) ]
+

2M

t
.

By the properties of algorithm A, with probability at least (1−4β) we have that S̃0 and S̃1 are (4α+4β)-
close to Ŝ0 and to Ŝ1 (respectively). We proceed with the analysis assuming that this is the case. Hence,

Qclabel(D) ≤ 1

t

[
m̂0 ·Qc(S̃0) + (4α+ 4β)m̂0 + m̂1

(
1−Qc(S̃1)

)
+ (4α+ 4β)m̂1

]
+

2M

t

=
1

t

[
m̂0 ·Qc(S̃0) + m̂1

(
1−Qc(S̃1)

) ]
+ (4α+ 4β)

m̂0 + m̂1

t
+

2M

t

≤ 1

t

[
m̂0 ·Qc(S̃0) + m̂1

(
1−Qc(S̃1)

) ]
+ (4α+ 4β)

t+ 2M

t
+

2M

t

≤ 1

t

[
m̂0 ·Qc(S̃0) + m̂1

(
1−Qc(S̃1)

) ]
+ (4α+ 4β) +

4M

t

Note that as clabel(xi ◦ 0) = c(xi) and as clabel(xi ◦ 1) = 1− c(xi), it holds that

Qclabel(S̃0 ◦ 0) = Qc(S̃0);

Qclabel(S̃1 ◦ 1) = 1−Qc(S̃1).

Hence,

Qclabel(D) ≤ 1

t

[
m̂0 ·Qclabel(S̃0 ◦ 0) + m̂1 ·Qclabel(S̃1 ◦ 1)

]
+ (4α+ 4β) +

4M

t
.

Denoting D̃ = (zi)
r
i=1 ∈ (Xd+1)

r (where r = n(m̂0 + m̂1)), we get

Qclabel(D)

≤ 1

nt

[
m̂0 ·

∣∣∣∣
{
i :

zi ∈ S̃0 ◦ 0
clabel(zi) = 1

}∣∣∣∣+ m̂1 ·
∣∣∣∣
{
i :

zi ∈ S̃1 ◦ 1
clabel(zi) = 1

}∣∣∣∣
]
+ (4α+ 4β) +

4M

t

=
1

nt

∣∣{i : clabel(zi) = 1
}∣∣ + (4α+ 4β) +

4M

t

=
m̂0 + m̂1

t
·Qclabel(D̃) + (4α+ 4β) +

4M

t

≤ t+ 2M

t
·Qclabel(D̃) + (4α+ 4β) +

4M

t

≤ Qclabel(D̃) + (4α+ 4β) +
6M

t

≤ Qclabel(D̃) + (5α+ 4β).
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Similar arguments show that Qclabel(D) ≥ Qclabel(D̃) − (5α + 4β). Algorithm B is, therefore, a (5α +
4β), 5β, 6ǫ, t)-sanitizer for C label, where

t =

⌈
6

α2

⌉
M =

⌈
6

α2

⌉
·
⌈
18

β
ln(

2

αβ
)

(
1 +

1

mǫ

)⌉
·m = Oα,β,ǫ(m).

Theorem 5.5. Let α, ǫ ≤ 1
8 , and let C be a class of predicates. If there exists an (α, β, ǫ,m)-sanitizer A for

C, then there exists a proper ((15α+ 12β), 10β, 6ǫ, t)-PPAC learner for C, where t = Oα,β,ǫ(m).

Proof. Let A be an (α, β, ǫ,m)-sanitizer for C. Note that by Theorem 2.20, it must be that m ≥ VC(C)
2 . By

Lemma 5.4, there exists a ((5α+4β), 5β, 6ǫ, t)-sanitizer for C label, where t = Oα,β,ǫ(m) and t ≥ 100m
α2 ln( 1

αβ ) ≥
50VC(C)

α2 ln( 1
αβ ). By Lemma 5.3, there exists a proper ((15α+ 12β), 10β, 6ǫ, t)-PPAC learner for C.

Remark 5.6. Given an efficient proper-sanitizer for C and assuming the existence of an efficient non-private
learner for C, this reduction results in an efficient private learner for C.

5.2 A Lower Bound for k-POINTd

Next we prove a lower bound on the database size of every sanitizer for k-POINTd that preserves pure
differential privacy.

Consider the following concept class over Xd. For every A ⊆ Xd s.t. |A| = k, the concept class k-POINTd
contains the concept cA : Xd → {0, 1}, defined as cA(x) = 1 if x ∈ A and cA(x) = 0 otherwise. The VC
dimension of k-POINTd is k (assuming 2d ≥ 2k).

To prove a lower bound on the sample complexity of sanitization, we first prove a lower bound on the
sample complexity of the related learning problem and then use the reduction (Theorem 5.5). Thus, we
start by showing that every private proper learner for k-POINTd requires Ω(kdαǫ ) labeled examples. A similar
version of this lemma appeared in Beimel et al. [3], where it is shown that every private proper learner for
POINTd requires Ω( d

αǫ ) labeled examples.

Lemma 5.7. Let α < 1
5 , and let k, d be s.t. 2d ≥ k1.1. If L is a proper (α, 1

2 , ǫ,m)-PPAC learner for

k-POINTd, then m = Ω(kdαǫ ).

Proof. Let L be a proper (α, 1
2 , ǫ,m)-PPAC learner for k-POINTd. Without loss of generality, we can assume

that m ≥ 5 ln(4)
3α (since L can ignore part of the sample).

Consider a maximal cardinality subset B ⊆ k-POINTd s.t. for every cA ∈ B it holds that 0d /∈ A,

and moreover, for every cA1
6= cA2

∈ B it holds that |A1 ∩ A2| ≤ k
2 . We have that |B| ≥

(
2d−1
4e2k

)k/2
.

To see this, we could construct such a set using the following greedy algorithm. Initiate B̂ = ∅, and
C = k-POINTd \{cI ∈ k-POINTd : 0d ∈ I}. While C 6= ∅, arbitrarily choose a concept cA ∈ C, add cA to B̂,
and remove from C every concept cI s.t. |A ∩ I| ≤ k

2 .

Clearly, for every two cA1
6= cA2

∈ B̂ it holds that |A1 ∩ A2| ≤ k
2 . Moreover, at every step, the number

of concepts that are removed from C is at most

k∑

j=k/2

(
k

j

)
·
(
2d − 1− k

k − j

)
≤
(

k

k/2

)
·
(
2d − 1

k/2

)
,

and, therefore,

B̂ ≥
(
2d−1
k

)
(

k
k/2

)
·
(
2d−1
k/2

) ≥
(
2d − 1

4e2k

)k/2

.
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For every cA ∈ B we will now define a distribution DA, a set of hypotheses G(A), and a database SA.
The distribution DA is defined as

DA(x) =





1− 5α, x = 0d.
5α
k , x ∈ A.

0, else.

Define the set G(A) ⊆ k-POINTd as all α-good hypothesis for (cA,DA) in k-POINTd. Note that for every
hI ∈ k-POINTd s.t. errorDA(hI , cA) ≤ α it holds that |I ∩ A| ≥ 4k

5 . Therefore, for every cA1
6= cA2

∈ B it

holds that G(A1) ∩G(A2) = ∅ (as |A1 ∩ A2| ≤ k
2 , and as |A1| = |A2| = |I| = k).

By the utility properties of L, we have that PrL,DA [L(S) ∈ G(A)] ≥ 1
2 . We say that a database S of

m labeled examples is good if the unlabeled example 0d appears in S at least (1 − 8α)m times. Let S be a
database constructed by taking m i.i.d. samples from DA, labeled by cA. By the Chernoff bound, S is good
with probability at least 1− exp(−3αm/5). Hence,

Pr
DA,L

[(L(S) ∈ G(A)) ∧ (S is good)] ≥ 1

2
− exp(−3αm/5) ≥ 1

4
.

Note that, as 0d /∈ A, every appearance of the example 0d in S is labeled by 0. Therefore, there exists a
good database S ofm samples that contains the entry 0d◦0 at least (1−8α)m times, and PrL [L(S) ∈ G(A)] ≥
1
4 , where the probability is only over the randomness of L. We define SA as such a database.

Note that all of the databases SAi defined here are of distance at most 8αm from one another. The privacy
of L ensures, therefore, that for any two such SAi , SAj it holds that PrL[L(SAi) ∈ G(Aj)] ≥ 1

4 exp(−8αǫm).
Now,

1− 1

4
≥ Pr

L
[L(SAi) /∈ G(Ai)]

≥ Pr
L
[L(SAi) ∈

⋃

Aj 6=Ai

G(Aj)]

≥
∑

Aj 6=Ai

Pr
L
[L(SAi) ∈ G(Aj)]

≥ (|B| − 1)
1

4
exp(−8αǫm)

≥
((

2d − 1

4e2k

)k/2

− 1

)
1

4
exp(−8αǫm). (6)

Solving for m yields m = Ω( k
αǫ (d− ln(k))). Recall that 2d ≥ k1.1, and, hence, m = Ω(kdαǫ )

Remark 5.8. The constant 1.1 in the above lemma could be replaced with any constant strictly bigger than

1. Moreover, whenever 2d = O(k) we have that | k-POINTd | =
(
2d

k

)
= 2O(2d) and, hence, the generic con-

struction of Kasiviswanathan et al. [22] yields a proper ǫ-private learner for this class with sample complexity
Oα,β,ǫ(2

d) = Oα,β,ǫ(k).

In the next lemma we will use the last lower bound on the sample complexity of private learners, together
with the reduction of Theorem 5.5, and derive a lower bound on the database size necessary for pure private
sanitizers for k-POINTd.

Theorem 5.9. Let ǫ ≤ 1
8 , and let k and d be s.t. 2d ≥ k1.1. Every ( 1

150 ,
1

150 , ǫ,m)-sanitizer for k-POINTd
requires databases of size

m = Ω

(
1

ǫ
VC(k-POINTd) · log |Xd|

)
.

38



Proof. Let A be a ( 1
150 ,

1
150 , ǫ,m)-sanitizer for k-POINTd. By Theorem 5.5, there exists a proper ( 9

50 ,
1
15 , 6ǫ, t)-

PPAC learner for k-POINTd, where t = O (m). By Lemma 5.7, t = Ω
(
kd
ǫ

)
, and hence m = Ω

(
kd
ǫ

)
.

Recall that in the proof of Theorem 5.5, we increased the sample complexity in order to use Lemma 5.3.
This causes a slackness of α2 in the database size of the resulting learner, which, in turn, eliminates the
dependency in α in the above lower bound. For the class k-POINTlabeld it is possible to obtain a better lower
bound, by using the reduction of Lemma 5.3 twice.

Theorem 5.10. Let α ≤ 1
50 and ǫ ≤ 1

8 . There exist a d0 = d0(α, ǫ) s.t. for every k and d s.t. 2d ≥
max{k1.1 , 2d0}, it holds that every (α, 1

50 , ǫ,m)-sanitizer for k-POINTlabeld must operate on databases of size

m = Ω

(
1

αǫ
VC(k-POINTlabeld ) · log |Xd|

)
.

Proof. Let A be a ( 1
50 ,

1
50 , ǫ,m)-sanitizer for a class k-POINTlabeld , where ǫ ≤ 1

8 . Note that by Theorem 2.20,

it must be that m ≥ VC(k-POINTlabel

d )
2 ≥ VC(k-POINTd)

2 . In order to use Lemma 5.3, we need a slightly stronger
guarantee, and therefore use Lemma 5.1 to increase the input database size as follows.

Denote q =
⌈
100 · 503 ln(502)

⌉
. By Lemma 5.1, there exists a ( 2

25 ,
1
50 , ǫ, t)-sanitizer B for k-POINTlabeld ,

where
t = qm = m

⌈
100 · 503 ln(502)

⌉
≥ 50 · 503VC(k-POINTd) ln(502).

By Lemma 5.3, there exists a proper ( 9
50 ,

1
25 , ǫ, t)-PPAC learner for k-POINTd. By Lemma 5.7, t = Ω

(
kd
ǫ

)
,

and hence

m = Ω

(
kd

ǫ

)
. (7)

Let α ≤ 1
50 and ǫ ≤ 1

8 , and let B be an (α, 1
50 , ǫ,m)-sanitizer for k-POINTlabeld . As B is, in particular,

a ( 1
50 ,

1
50 , ǫ,m)-sanitizer for k-POINTlabeld , where ǫ ≤ 1

8 , Equation 7 states that there exists a constant λ s.t.

m ≥ λkd
ǫ . Asserting that d ≥ d0 , 50ǫ

λα2 ln(
50
α ), we ensure that m ≥ 50k

α2 ln(50α ). By reusing Lemme 5.3, we
now get that there exists a proper (3α, 1

25 , ǫ,m)-PPAC learner for k-POINTd. Lemma 5.7 now states that

m = Ω

(
kd

αǫ

)
= Ω

(
1

αǫ
VC(k-POINTlabeld ) · log |Xd|

)
.

6 Label-Private Learners

6.1 Generic Label-Private Learner

In this section we consider relaxed definitions of private learners preserving pure privacy (i.e., δ = 0). We
start with the model of label privacy (see [9] and references therein). In this model, privacy must only be
preserved for the labels of the elements in the database, and not necessarily for their identity. This is a
reasonable privacy requirement when the identity of individuals in a population are known publicly but not
their labels. In general, this is not a reasonable assumption.

We consider a database S = (xi, yi)
m
i=1 containing labeled points from some domain X , and denote

Sx = (xi)
m
i=1 ∈ Xm, and Sy = (yi)

m
i=1 ∈ {0, 1}m.

Definition 6.1 (Label-Private Learner). Let A be an algorithm that gets as input a database Sx ∈ Xm and
its labels Sy ∈ {0, 1}m. Algorithm A is an (α, β, ǫ,m)-Label Private PAC Learner for a concept class C over
X if
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Generic Label-Private Learner
Input: parameter ǫ, and a labeled database S = (xi, yi)

m
i=1, where m ≥ 768

α2ǫ (VC(C) ln(64α ) + 2 ln( 8β )).

1. Initialize H = ∅.

2. Set n = 32
α (VC(C) ln(64α ) + ln( 8β )), and denote S1 = (xi, yi)

n
i=1, and S2 = (xi, yi)

m
i=n+1.

3. Let B = {b1, . . . , bℓ} be the set of all the (unlabeled) points appearing at least once in S1.

4. For every (z1, . . . , zℓ) ∈ ΠC(B),

(a) Let c ∈ C be an arbitrary concept in C s.t. c(bi) = zi for every 1 ≤ i ≤ ℓ.

(b) Add c to H .

5. Choose and return h ∈ H using the exponential mechanism with inputs ǫ,H, S2 and the quality
function q(S2, h) = |{i : h(xi) = yi}|.

Figure 13: A generic label-private learner.

Privacy. ∀Sx ∈ Xm, algorithm A(Sx, ·) = ASx(·) is ǫ-differentially private (as in Definition 2.2);

Utility. Algorithm A is an (α, β,m)-PAC learner for C (as in Definition 2.7).

Chaudhuri et al. [9] proved lower bounds on the sample complexity of label-private learners for a class
C in terms of its doubling dimension. As we will now see, the correct measure for characterizing the sample
complexity of such learners is the VC dimension, and the sample complexity of label-private learners is
actually of the same order as that of non-private learners (assuming α, β, and ǫ are constants).

Theorem 6.2. Let C be a concept class over a domain X. For every α, β, ǫ, there exists an (α, β, ǫ,m)-Label
Private PAC learner for C, where m = Oα,β,ǫ(VC(C)). The learner might not be efficient.

Proof. For a concept class C over a domain X , and for a subset B = {b1, . . . , bℓ} ⊆ X , the projection of C
on B is denoted as

ΠC(B) = {(c(b1), . . . , c(bℓ)) : c ∈ C}.
In Figure 13 we describe a label-private algorithm A. Algorithm A constructs a set of hypotheses H as

follows: It samples an unlabeled sample S1, and defines B as the set of points in S1. For every labeling
of the points in B realized by C, add to H an arbitrary concept consistent with this labeling. Afterwards,
algorithm A uses the exponential mechanism to choose a hypothesis out of H .

Note that steps 1-4 of algorithm A are independent of the labeling vector Sy. By the properties of
the exponential mechanism (which is used to access Sy on Step 5), for every set of elements Sx, algorithm
A(Sx, ·) is ǫ-differentially private.

For the utility analysis, fix a target concept c ∈ C and a distribution D over X , and define the following
3 good events:

E1 The constructed set H contains at least one hypothesis f s.t. errorS2(f) ≤ α
4 .

E2 For every h ∈ H s.t. errorS2(h) ≤ α
2 , it holds that errorD(c, h) ≤ α.

E3 The exponential mechanism chooses an h such that errorS2(h) ≤ α
4 +minf∈H {errorS2(f)}.

We first show that if these 3 good events happen, then algorithm A returns an α-good hypothesis. Event
E1 ensures the existence of a hypothesis f ∈ H s.t. errorS2(f) ≤ α

4 . Thus, event E1 ∩E3 ensures algorithm
A chooses (using the exponential mechanism) a hypothesis h ∈ H s.t. errorS2(h) ≤ α

2 . Event E2 ensures,
therefore, that this h obeys errorD(c, h) ≤ α.
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We will now show that those 3 events happen with high probability. For every (y1, . . . , yℓ) ∈ ΠC(B),
algorithm A adds to H a hypothesis f s.t. ∀1 ≤ i ≤ ℓ, f(bi) = yi. In particular, H contains a hypothesis
h∗ s.t. h∗(x) = c(x) for every x ∈ B. That is, a hypothesis h∗ s.t. errorS1(h∗) = 0. Therefore, by setting
n ≥ 32

α (VC(C) ln(64α )+ln( 8β )), Theorem 2.13 ensures that errorD(c, h
∗) ≤ α

8 with probability at least (1− β
4 ).

In such a case, using the Chernoff bound, we get that with probability at least 1− exp(−(m− n)α/24) this
hypothesis h∗ satisfies errorS2(h∗) ≤ α

4 . Event E1 happens, therefore, with probability at least (1 − β
4 )(1−

exp(−(m− n)α/24)), which is at least (1 − β
2 ) for m ≥ n+ 24

α ln(4/β).
Fix a hypothesis h s.t. errorD(c, h) > α. Using the Chernoff bound, the probability that errorS2(h) ≤ α

2

is less than exp(−(m− n)α/8). As |H | = 2|B| ≤ 2n, the probability that there is such a hypothesis in H is
at most 2n · exp(−(m− n)α/8). For m ≥ 8

α (n+ ln( 4β )), this probability is at most β
4 , and event E2 happens

with probability at least (1 − β
4 ).

The exponential mechanism ensures that the probability of event E3 is at least 1 − |H | · exp(−ǫαm/8)
(see Proposition 2.25), which is at least (1− β

4 ) for m ≥ 8
αǫ (n+ ln( 4β )).

All in all, by setting n = 32
α (VC(C) ln(64α )+ ln( 8β )) and m ≥ 768

α2ǫ(VC(C) ln(64α )+2 ln( 8β )), we ensure that
the probability of A failing to output an α-good hypothesis is at most β.

6.2 Label Privacy Extension

We consider a slight generalization of the label privacy model. Recall that given a labeled sample, a private
learner is required to preserve the privacy of the entire sample, while a label-private learner is only required
to preserve privacy for the labels of each entry.

Consider a scenario where there is no need in preserving the privacy of the distribution D (for example,
D might be publicly known), but we still want to preserve the privacy of the entire sample S. We can model
this scenario as a learning algorithm A which is given as input 2 databases – a labeled database S, and an
unlabeled database D. For every database D, algorithm A(D, ·) = AD(·) must preserve differential privacy.
We will refer to such a learner as a Semi-Private learner.

Clearly, Ω(VC(C)) samples are necessary in order to semi-privately learn a concept class C, as this is
the case for non-private learners.5 This lower bound is tight, as the above generic learner could easily be
adjusted for the semi-privacy model, and result in a generic semi-private learner with sample complexity
Oα,β,ǫ(VC(C)). To see this, recall that in the above algorithm, the input sample S is divided into S1 and
S2. Note that the labels in S1 are ignored, and, hence, S1 could be replaced with an unlabeled database.
Moreover, note that S2 is only accessed using the exponential mechanism (on Step 5), which preserves the
privacy both for the labels and for the examples in S2.

Example 6.3. Consider the task of learning a concept class C, and suppose that the relevant distribution over
the population is publicly known. Now, given a labeled database S, we can use a semi-private learner and
guarantee privacy both for the labellings and for the mere existence of an individual in the database. That
is, in such a case, the privacy guarantee of a semi-private learner is the same as that of a private learner.
Moreover, the necessary sample complexity is Oα,β,ǫ(VC(C)), which should be contrasted with Oα,β,ǫ(log |C|)
which is the sample complexity that would result from the general construction of Kasiviswanathan et al. [22].
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